in

Male diet affects female fitness and sperm competition in human- and bat-associated lineages of the common bedbug, Cimex lectularius

[adace-ad id="91168"]
  • 1.

    Coyne, J. A. & Orr, A. H. Speciation. (Sinauer associates, Inc., 2004).

  • 2.

    Nosil, P. Ecological speciation. (Oxford University Press, 2012). https://doi.org/10.1093/acprof:osobl/9780199587100.001.0001

  • 3.

    Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).

    Article 

    Google Scholar 

  • 4.

    Almbro, M., Dowling, D. K. & Simmons, L. W. Effects of vitamin E and beta-carotene on sperm competitiveness. Ecol. Lett. 14, 891–895 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Sutter, A. & Immler, S. Within-ejaculate sperm competition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20200066 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Balfour, V. L., Black, D. & Shuker, D. M. Mating failure shapes the patterns of sperm precedence in an insect. Behav. Ecol. Sociobiol. 74, 1–14 (2020).

    Article 

    Google Scholar 

  • 7.

    Reinhardt, K., Dobler, R. & Abbott, J. An ecology of sperm: Sperm diversification by natural selection. Annu. Rev. Ecol. Evol. Syst. 46, 435–459 (2015).

    Article 

    Google Scholar 

  • 8.

    Dobler, R. & Reinhardt, K. Heritability, evolvability, phenotypic plasticity and temporal variation in sperm-competition success of Drosophila melanogaster. J. Evol. Biol. 29, 929–941 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Evans, J. P., Lymbery, R. A., Wiid, K. S., Rahman, M. M. & Gasparini, C. Sperm as moderators of environmentally induced paternal effects in a livebearing fish. Biol. Lett. 13, 20170087 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Alavi, S. M. H. & Cosson, J. Sperm motility in fishes. I. Effects of temperature and pH: A review. Cell Biol. Int. 29, 101–110 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Foresta, C. et al. Human papillomavirus found in sperm head of young adult males affects the progressive motility. Fertil. Steril. 93, 802–806 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Mann, T. The biochemistry of semen and the male reproductive tract. (London: Methuen & Co (1964), 1964).

  • 13.

    Otti, O., McTighe, A. P. & Reinhardt, K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct. Ecol. 27, 219–226 (2013).

    Article 

    Google Scholar 

  • 14.

    Valdebenito, I., Fletcher, C., Vera, V. & Fernández, J. Physical-chemical factors that regulate spermatic motility in fish: Basic and applied aspects. A review. . Arch. Med. Vet. 41, 97–106 (2009).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Werner, M. & Simmons, L. W. Insect sperm motility. Biol. Rev. 83, 191–208 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Barros, C. M., Pegorer, M. F., Vasconcelos, J. L. M., Eberhardt, B. G. & Monteiro, F. M. Importance of sperm genotype (indicus versus taurus) for fertility and embryonic development at elevated temperatures. Theriogenology 65, 210–218 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Blanco, J. M., Gee, G., Wildt, D. E. & Donoghue, A. M. Species variation in osmotic, cryoprotectant, and cooling rate tolerance in poultry, eagle, and peregrine falcon spermatozoa. Biol. Reprod. 63, 1164–1171 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Chacur, M. G. M., Mizusaki, K. T., Filho, L. R. A. G., Oba, E. & Ramos, A. A. Seasonal effects on semen and testosterone in zebu and taurine bulls. Acta Sci. Vet. 41, 1110 (2013).

    Google Scholar 

  • 19.

    Lewis, S. M., Tigreros, N., Fedina, T. & Ming, Q. L. Genetic and nutritional effects on male traits and reproductive performance in Tribolium flour beetles. J. Evol. Biol. 25, 438–451 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Schramm, G.-P. Studies on genotype specific modified methods for cryopreservation of cock semen. Züchtungskunde 80, 137–145 (2008).

    Google Scholar 

  • 21.

    Rohmer, C., David, J. R., Moreteau, B. & Joly, D. Heat induced male sterility in Drosophila melanogaster: Adaptive genetic variations among geographic populations and role of the Y chromosome. J. Exp. Biol. 207, 2735–2743 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Reinhardt, K. & Otti, O. Comparing sperm swimming speed. Evol. Ecol. Res. 14, 1–8 (2012).

    Google Scholar 

  • 23.

    Öst, A. et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Wathes, D. C., Abayasekara, D. R. E. & Aitken, R. J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 77, 190–201 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Diaz-Fontdevila, M. & Bustos-Obregon, E. Cholesterol and polyunsaturated acid enriched diet: Effect on kinetics of the acrosome reaction in rabbit spermatozoa. Mol. Reprod. Dev. 35, 176–180 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Keber, R., Rozman, D. & Horvat, S. Sterols in spermatogenesis and sperm maturation. J. Lipid Res. 54, 20–33 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Guo, R. & Reinhardt, K. Dietary polyunsaturated fatty acids affect volume and metabolism of Drosophila melanogaster sperm. J. Evol. Biol. https://doi.org/10.1111/jeb.13591 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Rato, L., Alves, M. G., Cavaco, J. E. & Oliveira, P. F. High-energy diets: a threat for male fertility?. Obes. Rev. 15, 996–1007 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Ferramosca, A., Moscatelli, N., Di Giacomo, M. & Zara, V. Dietary fatty acids influence sperm quality and function. Andrology 5, 423–430 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Paynter, E. et al. Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera). Sci. Rep. 7, 1–9 (2017).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Chinoy, N. J., Mehta, D. & Jhala, D. Effects of fluoride ingestion with protein deficient or protein enriched diets on sperm function of mice. Fluoride 39, 11–16 (2006).

    CAS 

    Google Scholar 

  • 32.

    Watkins, A. J. et al. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. U. S. A. 115, 10064–10069 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Ferramosca, A. & Zara, V. Bioenergetics of mammalian sperm capacitation. Biomed Res. Int. 2014, 902953 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Vawda, A. I. & Mandlwana, J. G. The effects of dietary protein deficiency on rat testicular function. Andrologia 22, 575–583 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Carvalho, M. et al. Effects of diet and development on the Drosophila lipidome. Mol. Syst. Biol. 8, 600 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Macartney, E. L., Crean, A. J., Nakagawa, S. & Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. 94, 1722–1739 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: Identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Wainwright, M. S. et al. Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. Proc. Natl. Acad. Sci. USA 118, e2019622118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Elofsson, H., Van Look, K., Borg, B. & Mayer, I. Influence of salinity and ovarian fluid on sperm motility in the fifteen-spined stickleback. J. Fish Biol. 63, 1429–1438 (2003).

    Article 

    Google Scholar 

  • 40.

    Otti, O., Johnston, P. R., Horsburgh, G. J., Galindo, J. & Reinhardt, K. Female transcriptomic response to male genetic and nongenetic ejaculate variation. Behav. Ecol. 26, 681–688 (2015).

    Article 

    Google Scholar 

  • 41.

    Balvín, O., Munclinger, P., Kratochvíl, L. & Vilímová, J. Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans. Parasitol. Res. 111, 457–469 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Booth, W., Balvín, O., Vargo, E. L., Vilímová, J. & Schal, C. Host association drives genetic divergence in the bed bug. Cimex lectularius. Mol. Ecol. 24, 980–992 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Wawrocka, K. & Bartonička, T. Two different lineages of bedbug (Cimex lectularius) reflected in host specificity. Parasitol. Res. 112, 3897–3904 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Aak, A. & Rukke, B. A. Bed bugs, their blood sources and life history parameters: A comparison of artificial and natural feeding. Med. Vet. Entomol. 28, 50–59 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Reinhardt, K., Naylor, R. & Siva-Jothy, M. T. Reducing a cost of traumatic insemination: Female bedbugs evolve a unique organ. Proc. R. Soc. B Biol. Sci. 270, 2371–2375 (2003).

    Article 

    Google Scholar 

  • 46.

    Reinhardt, K., Naylor, R. A. & Siva-Jothy, M. T. Situation exploitation: Higher male mating success when female resistance is reduced by feeding. Evolution (N. Y.). 63, 29–39 (2009).

    Google Scholar 

  • 47.

    Siva-Jothy, M. T. & Stutt, A. D. A matter of taste: Direct detection of female mating status in the bedbug. Proc. R. Soc. B Biol. Sci. 270, 649–652 (2003).

    Article 

    Google Scholar 

  • 48.

    Davis, N. T. Studies of the reproductive physiology of Cimicidae (Hemiptera)-II. Artificial insemination and the function of the seminal fluid. J. Insect. Physiol. 11, 355–366 (1965).

    Article 

    Google Scholar 

  • 49.

    Kaldun, B. & Otti, O. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius. Ecol. Evol. 6, 2548–2558 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Reinhardt, K., Naylor, R. A. & Siva-Jothy, M. T. Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect. Proc. Natl. Acad. Sci. USA 106, 21743–21747 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 51.

    Reinhardt, K., Naylor, R. & Siva-Jothy, M. T. Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius. . PLoS ONE 6, 282 (2011).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Fountain, T., Duvaux, L., Horsburgh, G., Reinhardt, K. & Butlin, R. K. Human-facilitated metapopulation dynamics in an emerging pest species. Cimex lectularius. Mol. Ecol. 23, 1071–1084 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 53.

    R Core Team. R: A language and environment for statistical computing. (2020).

  • 54.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 55.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • 56.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 57.

    Therneau, T. M. coxme: Mixed effects cox models. (2019).

  • 58.

    Harrison, X. A. A comparison of observation-level randomeffect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ 2015, 114 (2015).

    Google Scholar 

  • 59.

    Clark, A. G., Aguadé, M., Prout, T. R., Harshman, L. G. & Langley, C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 139, 189–201 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Friberg, U., Lew, T. A., Byrne, P. G. & Rice, W. R. Assessing the potential for an ongoing arms race within and between the sexes: selection and heritable variation. Evol. (N.Y.) 59, 1540 (2005).

    Google Scholar 

  • 61.

    Morimoto, J. & Wigby, S. Differential effects of male nutrient balance on pre-and post-copulatory traits, and consequences for female reproduction in Drosophila melanogaster. Sci. Rep. 6, 27673 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 62.

    Rahman, M. M., Gasparini, C., Turchini, G. M. & Evans, J. P. Experimental reduction in dietary omega-3 polyunsaturated fatty acids depresses sperm competitiveness. Biol. Lett. 10, 20140623 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Hawkey, C. M. Comparative mammalian haematology : cellular components and blood coagulation of captive wild animals. (Butterworth-Heinemann, 2017).

  • 64.

    Wawrocka, K. & Bartonička, T. Erythrocyte size as one of potential causes of host preferences in cimicids (Heteroptera: Cimicidae: Cimex). Vespertilio 17, 215–220 (2014).

    Google Scholar 

  • 65.

    Bunning, H. et al. Protein and carbohydrate intake influence sperm number and fertility in male cockroaches, but not sperm viability. Proc. R. Soc. B Biol. Sci. 282, 1 (2015).

    CAS 

    Google Scholar 

  • 66.

    Perez-Staples, D., Harmer, A. M. T., Collins, S. R. & Taylor, P. W. Potential for pre-release diet supplements to increase the sexual performance and longevity of male Queensland fruit flies. Agric. For. Entomol. 10, 255–262 (2008).

    Article 

    Google Scholar 

  • 67.

    Dàvila, F. & Aron, S. Protein restriction affects sperm number but not sperm viability in male ants. J. Insect. Physiol. 100, 71–76 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Olsen, J. & Ramlau-Hansen, C. H. Dietary fats may impact semen quantity and quality. Asian J. Androl. 14, 511–512 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Birkhead, T. R., Martínez, J. G., Burke, T. & Froman, D. P. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. B Biol. Sci. 266, 1759–1764 (1999).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Colegrave, N., Birkhead, T. R. & Lessells, C. M. Sperm precedence in zebra finches does not require special mechanisms of sperm competition. Proc. R. Soc. B Biol. Sci. 259, 223–228 (1995).

    Article 
    ADS 

    Google Scholar 

  • 71.

    Simmons, L. W. Sperm competition and its evolutionary consequences in the insects. (Princeton University Press, 2001).

  • 72.

    Tsubaki, Y. & Yamagishi, M. ‘Longevity’ of sperm within the female of the melon fly, Dacus cucurbitae (Diptera: Tephritidae), and its relevance to sperm competition. J. Insect. Behav. 4, 243–250 (1991).

    Article 

    Google Scholar 

  • 73.

    Yamagishi, M., Itô, Y. & Tsubaki, Y. Sperm competition in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae): Effects of sperm ‘longevity’ on sperm precedence. J. Insect. Behav. 5, 599–608 (1992).

    Article 

    Google Scholar 

  • 74.

    Reinhardt, K. Evolutionary consequences of sperm cell aging. Q. Rev. Biol. 82, 375–393 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 75.

    Frankham, R. & Ralls, K. Inbreeding leads to extinction. Nature 392, 441–442 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Inaugural fund supports early-stage collaborations between MIT and Jordan

    Integrating plant-to-plant communication and rhizosphere microbial dynamics: ecological and evolutionary implications and a call for experimental rigor