Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638 (1966).
Google Scholar
Brown, J. H. & Maurer, B. A. Body size, ecological dominance and Cope’s rule. Nature 324, 248–250 (1986).
Google Scholar
Brown, J. H., Marquet, P. A. & Taper, M. L. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573–584 (1993).
Google Scholar
Peters, R. H. The ecological implications of body size. Cambridge University Press. (1983).
White, E. P., Ernest, S. K. M., Kerkhoff, A. J. & Enquist, B. J. Relationship between body size and abundance in ecology. Trends Ecol. Evo 22, 323–330 (2007).
Google Scholar
Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).
Google Scholar
Bergmann, C. About the relationships between heat conservation and body size of animals. Goett. Stud. (original Ger.) 1, 595–708 (1847).
Ashton, K. G., Tracy, M. C. & de Queiroz, A. Is Bergmann’s rule valid for mammals? Am. Nat. 156, 390–415 (2000).
Google Scholar
Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).
Google Scholar
Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. elife 7, e27166 (2018).
Google Scholar
Alroy, J. A multispecies overkill simulation of the end- Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).
Google Scholar
Pineda-Munoz, S., Evans, A. & Alroy, J. The relationship between diet and body mass in terrestrial mammals. Paleobiology 42, 659–669 (2016).
Google Scholar
Tomassini, A., Colangelo, P., Agnelli, P., Jones, G. & Russo, D. Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: a response to changing climate or urbanization? J. Biogeogr. 41, 944–953 (2014).
Google Scholar
Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818 (2012).
Google Scholar
Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).
Google Scholar
Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1882).
Blackburn, T. M. & Hawkins, B. A. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724 (2004).
Google Scholar
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).
Google Scholar
Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017).
Google Scholar
Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).
Google Scholar
Merckx, T. et al. Body‐size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).
Google Scholar
Magura, T., Ferrante, M. & Lövei, G. L. Only habitat specialists become smaller with advancing urbanization. Glob. Ecol. Biogeor. 29, 1978–1987 (2020).
Google Scholar
Pergams, O. R. W. & Lacy, R. C. Rapid morphological and genetic change in Chicago-area Peromyscus. Mol. Ecol. 17, 450–463 (2008).
Google Scholar
McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
Google Scholar
McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).
Google Scholar
Schmidt, N. M. & Jensen, P. M. Changes in mammalian body length over 175 years – adaptations to a fragmented landscape? Conserv. Ecol. 72, 6 (2003).
Schmidt, N. M. & Jensen, P. M. Concomitant patterns in avian and mammalian body length changes in Denmark. Ecol. Soc. 10, 5 (2005).
Google Scholar
Nowak, R. M. Walker’s mammals of the world. Baltimore: The Johns Hopkins University Press. (1999).
Lindstedt, S. L. & Boyce, M. S. Seasonality, fasting endurance, and body size in mammals. Am. Nat. 125, 873–878 (1985).
Google Scholar
McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).
Google Scholar
Naya, D. E., Naya, H. & Cook, J. Climate change and body size trends in aquatic and terrestrial endotherms: does habitat matter? PLoS ONE 12, e0183051 (2017).
Google Scholar
Johnson, G. E. Hibernation in mammals. Q. Rev. Biol. 6, 439–461 (1931).
Google Scholar
Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428–1444 (2011).
Google Scholar
Kuussaari, M. et al. Butterfly species’ responses to urbanization: differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527 (2021).
Google Scholar
McNab, B. K. Food habits, energetics, and the population biology of mammals. Am. Nat. 116, 106–124 (1980).
Google Scholar
Guralnick, R., Hantak, M. M., Li, D. & McLean, B. S. Body size trends in response to climate and urbanization in the widespread North American deer mouse, Peromyscus maniculatus. Sci. Rep. 10, 8882 (2020).
Google Scholar
Robinette, W. L., Baer, C. H., Pillmore, R. E. & Knittle, C. E. Effects of nutritional change on captive mule deer. J. Wildl. Manag. 37, 312–326 (1973).
Google Scholar
Beckmann, J. P. & Berger, J. Using black bears to test ideal-free distribution models experimentally. J. Mammal. 84, 594–606 (2003).
Google Scholar
Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H. & Stenseth, N. C. Lower extinction risk in sleep-or-hide mammals. Am. Nat. 173, 264–272 (2009).
Google Scholar
Eastman, L. M., Morelli, T. L., Rowe, K. C., Conroy, C. J. & Moritz, C. Size increase in high elevation ground squirrels over the last century. Glob. Change Biol. 18, 1499–1508 (2012).
Google Scholar
Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).
Google Scholar
Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
Google Scholar
Scheffers, B. R., Edward, D. P., Diesmos, A., William, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).
Google Scholar
Smith, F. A., Betancourt, J. L. & Brown, J. H. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270, 2012–2014 (1995).
Google Scholar
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
Google Scholar
Gohli, J. & Voje, K. L. An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evolut. Biol. 16, 222 (2016).
Google Scholar
Babinska-Werka, J. Food of the striped field mouse in different types of urban areas. Acta Theriol. 26, 285–299 (1981).
Google Scholar
Brown, J. S., Kotler, B. P. & Porter, W. P. How foraging allometries are resource dynamics could explain Bergmann’s rule and the body-size diet relationship in mammals. Oikos 126, 224–230 (2017).
Google Scholar
Santini, L. et al. One strategy does not fit all: Determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).
Google Scholar
Nielsen, S. E. et al. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations. BMC Ecol. 13, 31 (2013).
Google Scholar
Dahirel, M., De Cock, M., Vantieghem, P. & Bonte, D. Urbanization-driven changes in web building and body size in an orb web spider. J. Anim. Ecol. 88, 79–91 (2019).
Google Scholar
Hart, M. A. & Sailor, D. J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 95, 397–406 (2009).
Google Scholar
Yom-Tov, Y. Body sizes of carnivores commensal with humans have increased over the past 50 years. Funct. Ecol. 17, 323–327 (2003).
Google Scholar
Bateman, P. W. & Fleming, P. A. Big city life: carnivores in urban environments. J. Zool. 287, 1–23 (2012).
Google Scholar
Metcalfe, N. B. & Ure, S. E. Diurnal variation in flight performance and hence potential predation risk in small birds. Proc. R. Soc. B Biol. Sci. 261, 395–400 (1995).
Google Scholar
Kullberg, C., Fransson, T. & Jakobsson, S. Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proc. R. Soc. B Biol. Sci. 263, 1671–1675 (1996).
Google Scholar
Downes, S. Trading heat and food for safety: costs of predator avoidance in a lizard. Ecology 82, 2870–2881 (2001).
Google Scholar
Macleod, R., Gosler, A. G. & Cresswell, W. Diurnal mass gain strategies and perceived predation risk in the great tit Parus major. J. Anim. Ecol. 74, 956–964 (2005).
Google Scholar
Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. 26, 6336–6350 (2017).
Google Scholar
Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).
Google Scholar
Croci, S., Butet, A. & Clergeau, P. Does urbanization filter birds on the basis of their biological traits? Condor 110, 223–240 (2008).
Google Scholar
Jokimäki, J., Suhonen, J., Jokimäki-Kaisanlahti, M.-L. & Carbó-Ramirez, P. Effects of urbanization on breeding birds in European towns: Impacts of species traits. Urban Ecosyst. 19, 1565–1577 (2016).
Google Scholar
Jung, K. & Threlfall, C. G. Trait-dependent tolerance of bats to urbanization: a global meta-analysis. Proc. R. Soc. B Biol. Sci. 285, 20181222 (2018).
Google Scholar
Parsons, A. W. et al. Mammal communities are larger and more diverse in moderately developed areas. eLife 7, e38012 (2018).
Google Scholar
Fuller, A., Mitchell, D., Maloney, S. K. & Hetem, R. S. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Clim. Change Resp. 3, 10 (2016).
Google Scholar
Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926 (2015).
Google Scholar
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).
Google Scholar
Riddell, E. A. et al. Exposure to climate drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).
Google Scholar
Law, C. J., Slater, G. J. & Mehta, R. S. Shared extremes by ectotherms and endotherms: body elongation in mustelids is associated with small size and reduced limbs. Evolution 73, 735–749 (2019).
Google Scholar
Freckleton, R. P., Harvey, P. H. & Pagel, M. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825 (2003).
Google Scholar
Nengovhela, A., Denys, C. & Taylor, P. J. Life history and habitat do not mediate temporal changes in body size due to climate warming in rodents. PeerJ 8, 9792 (2020).
Google Scholar
Merckx, T., Kaiser, A. & Van Dyck, H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Glob. Change Biol. 24, 3837–3848 (2018).
Google Scholar
Ohlberger, J. Climate warming and ectotherm body size – from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).
Google Scholar
Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
Google Scholar
Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
Google Scholar
Christensen, J. H. et al. Climate Phenomena and their Relevance for Future Regional Climate Change in Climate Change 2013: The Physical Science Basis. Contribution Working Group I Fifth Assess. Rep. Intergovernmental Panel Clim. Change 1–6, 1217–1308 (2013). pp.
Guralnick, R. & Constable, H. VertNet: creating a data-sharing community. Bioscience 60, 258–259 (2010).
Google Scholar
National Ecological Observatory Network. Data Products: DP1.10072.001. Provisional data downloaded from http://data.neonscience.org on May 10, 2019. Battelle, Boulder, CO, USA. (2019).
Calhoun, J. B. North American census of small mammals. Release no. 1. Announcement of program. Rodent ecology program. Johns Hopkins University Pres. (1948).
Calhoun, J. B. North American census of small mammals. Release no. 2. Annual report of census made in 1948. Rodent ecology program. Johns Hopkins University Press. (1949).
Calhoun, J. B. North American census of small mammals. Release no. 3. Annual report of census made in 1949. Roscoe B. Jackson Memorial Laboratory. (1950).
Calhoun, J. B. North American census of small mammals. Release no. 4. Annual report of census made in 1950. Roscoe B. Jackson Memorial Laboratory. (1951).
Calhoun, J. B. Population dynamics of vertebrates. Compilations of research data. Release no. 5. 1951 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1956).
Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 6. 1952 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).
Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 7. 1953 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).
Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 8. 1954 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).
Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 9. 1955 and 1956 Annual report – North American census of small mammals and certain summaries for the years 1948–1956. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).
Guralnick, R. P. et al. The Importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158 (2016).
Google Scholar
Laney, C. & Lunch, C. neonUtilities: utilities for working with NEON data. R package version 1.3.1. https://cran.r-project.org/web/packages/neonUtilities. (2019).
Chapman, A. D. & Wieczorek, J. Guide to best practices for georeferencing. Global Biodiversity Information Facility. (2006).
Wieczorek, J., Guo, Q., Boureau, C. & Wieczorek, C. Georeferencing calculator. http://manisnet.org/gci2.html. (2001).
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/. (2021).
Tiwari, V. & Kashikar, A. OutlierDetection: Outlier Detection. R package version 0.1.1. https://cran.r-project.org/web/packages/OutlierDetection/index.html. (2019).
Fang, Y. & Jawitz, J. W. High-resolution reconstruction of the United States human population distribution, 1790 to 2010. Sci. Data 5, 180067 (2018).
Google Scholar
Venter, O. et al. Global Human Footprint maps for 1993 and 2009. Sci. Data 3, 10067 (2016).
Google Scholar
Li, D., Stucky, B. J., Deck, J., Baiser, B. & Guralnick, R. P. The effect of urbanization on plant phenology depends on regional temperature. Nat. Ecol. Evol. 3, 1661–1667 (2019).
Google Scholar
Li, D. et al. Climate, urbanization, and species traits interactively drive flowering duration. Glob. Change Biol. 27, 892–903 (2021).
Google Scholar
PRISM Climate Group. PRISM climate data. Available at https://prism.oregonstate.edu. (2020).
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol. 17, e3000494 (2019).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. (2014).
Brown, James H. Macroecology. University of Chicago Press. (1995).
Smith, F. A. et al. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am. Nat. 163, 672–691 (2004).
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
Barton, K. Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html. (2012).
Li, D., Dinnage, R., Helmus, M. & Ives, A. phyr: An R package for phylogenetic species‐distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).
Google Scholar
Ives, A. R. & Li, D. rr2: an R package to calculate R2s for regression models. J. Open Source Softw. 3, 1028 (2018).
Google Scholar
Source: Ecology - nature.com