Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).
Google Scholar
Encalada, A. C. et al. A global perspective on tropical montane rivers. Science 365, 1124–1129 (2019).
Google Scholar
Winemiller, K. O. et al. Development and environment. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).
Google Scholar
McIntyre, P. B., Reidy Liermann, C. A. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl. Acad. Sci. U. S. A. 113, 12880–12885 (2016).
Google Scholar
IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T.) (Bonn, Germany, 2019).
Allen, D. J., Smith, K. G. & Darwall, W. R. T. The Status and Distribution of Freshwater Biodiversity in Indo-Burma (IUCN, 2012).
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Google Scholar
Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, 960–967 (2019).
Google Scholar
Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. U. S. A. 109, 5609–5614 (2012).
Google Scholar
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Google Scholar
Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).
Google Scholar
Itakura, H. et al. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale. Aquat. Conserv. 29, 361–373 (2019).
Google Scholar
Wallace, A. R. The Geographical Distribution of Animals: With a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth’s Surface (Macmillan and Co, 1876).
Kreft, H. & Jetz, W. A framework for delineating biogeographical regions based on species distributions: Global quantitative biogeographical regionalizations. J. Biogeogr. 37, 2029–2053 (2010).
Google Scholar
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).
Google Scholar
Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).
Google Scholar
Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. U. S. A. 112, 2076–2081 (2015).
Google Scholar
Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).
Google Scholar
Bush, A. et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. Proc. Natl. Acad. Sci. U. S. A. 117, 8539–8545 (2020).
Google Scholar
Pawlowski, J., Apothéloz-Perret-Gentil, L. & Altermatt, F. Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol. 29, 4258–4264 (2020).
Google Scholar
Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).
Google Scholar
Li, J. et al. Ground-truthing of a fish-based environmental DNA metabarcoding method for assessing the quality of lakes. J. Appl. Ecol. 56, 1232–1244 (2019).
Google Scholar
Li, J. et al. Limited dispersion and quick degradation of environmental DNA in fish ponds inferred by metabarcoding. Environ. DNA 1, 238–250 (2019).
Google Scholar
Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361 (2018).
Google Scholar
Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).
Google Scholar
Jerde, C. L. Can we manage fisheries with the inherent uncertainty from eDNA? J. Fish Biol. 98(2), 341–353 (2019).
Bellemain, E. et al. Trails of river monsters: detecting critically endangered Mekong giant catfish Pangasianodon gigas using environmental DNA. Glob. Ecol. Conserv. 7, 148–156 (2016).
Google Scholar
Sakata, M. K., Maki, N., Sugiyama, H. & Minamoto, T. Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan. Naturwissenschaften 104, 100 (2017).
Google Scholar
Mizumoto, H., Urabe, H., Kanbe, T., Fukushima, M. & Araki, H. Establishing an environmental DNA method to detect and estimate the biomass of Sakhalin taimen, a critically endangered Asian salmonid. Limnology 19, 219–227 (2018).
Google Scholar
Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes. Mol. Ecol. Resour. 19, 27–46 (2019).
Google Scholar
Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 3085 (2019).
Google Scholar
Doble, C. J. et al. Testing the performance of environmental DNA metabarcoding for surveying highly diverse tropical fish communities: a case study from Lake Tanganyika. Environ. DNA 2, 24–41 (2020).
Google Scholar
Altermatt, F. et al. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129, 607–618 (2020).
Google Scholar
Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585 (2020).
Google Scholar
Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).
Google Scholar
Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175 (2014).
Google Scholar
Riaz, T. et al. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39, e145 (2011).
Google Scholar
Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
Google Scholar
Baselga, A. & Orme, C. D. L. betapart : an R package for the study of beta diversity : betapart package. Methods Ecol. Evol. 3, 808–812 (2012).
Google Scholar
Altermatt, F. Diversity in riverine metacommunities: a network perspective. Aquat. Ecol. 47, 365–377 (2013).
Google Scholar
Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63, 141–163 (2018).
Google Scholar
Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453, 220–222 (2008).
Google Scholar
Azaele, S., Muneepeerakul, R., Maritan, A., Rinaldo, A. & Rodriguez-Iturbe, I. Predicting spatial similarity of freshwater fish biodiversity. Proc. Natl. Acad. Sci. U. S. A. 106, 7058–7062 (2009).
Google Scholar
Carrara, F., Altermatt, F., Rodriguez-Iturbe, I. & Rinaldo, A. Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proc. Natl. Acad. Sci. U. S. A. 109, 5761–5766 (2012).
Google Scholar
Muneepeerakul, R., Bertuzzo, E., Rinaldo, A. & Rodriguez-Iturbe, I. Evolving biodiversity patterns in changing river networks. J. Theor. Biol. 2019(462), 418–424 (2019).
Google Scholar
Kang, B., Huang, X., Yan, Y., Yan, Y. & Lin, H. Continental-scale analysis of taxonomic and functional fish diversity in the Yangtze river. Glob. Ecol. Conserv. 15, e00442 (2018).
Google Scholar
Mächler, E. et al. Assessing different components of diversity across a river network using eDNA. Environ. DNA 1, 290–301 (2019).
Google Scholar
Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E. & Rinaldo, A. Estimating species distribution and abundance in river networks using environmental DNA. Proc. Natl. Acad. Sci. U. S. A. 115, 11724–11729 (2018).
Google Scholar
Roux, D. J. et al. Designing protected areas to conserve riverine biodiversity: lessons from a hypothetical redesign of the Kruger National Park. Biol. Conserv. 141, 100–117 (2008).
Google Scholar
Troia, M. J. & McManamay, R. A. Biogeographic classification of streams using fish community– and trait–environment relationships. Divers Distrib 26, 108–125 (2020).
Google Scholar
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish Aquat. Sci. 37, 130–137 (1980).
Google Scholar
He, Y., Wang, J., Lek, S., Cao, W. & Lek-Ang, S. Structure of endemic fish assemblages in the upper Yangtze River Basin. River Res Appl 27, 59–75 (2011).
Google Scholar
Lawson Handley, L. et al. Temporal and spatial variation in distribution of fish environmental DNA in England’s largest lake. Environ. DNA 1, 26–39 (2019).
Google Scholar
Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).
Google Scholar
Monkolprasit, S., Sontirat, S., Vimollohakarn, S. & Songsirikul, T. Checklist of Fishes in Thailand: OEPP Biodiversity Series Vol. 4 (Office of Environmental Policy and Planning, 1997).
Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).
Google Scholar
Blackman, R. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples—first record of Gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).
Google Scholar
Csárdi, G. & Nepusz, T. The igraph software package for complex network research. Inter Journal, Complex Systems 1695: 1–9 (2006). R package version 1.2.5. Available from https://cran.r-project.org/web/packages/igraph/index.html. Accessed 27 June 2020.
Oksanen, J. et al. vegan: Community Ecology Package 2.5-6. Available from https://CRAN.R-project.org/package=vegan. Accessed 27 June 2020.
Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. ISBN 92-9059-179-X. Accessed 23 March 2021.
Brock, G., Pihur, V., Datta, S. & Datta, S. clValid: An R Package for Cluster Validation. J Stat Softw 25: 1–22 (2008). R package version 0.6-9. Available from https://cran.r-project.org/web/packages/clValid/index.html. Accessed 27 June 2020.
R Studio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. (2019).
Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. (2020) R package version 1.0.7. Available from: https://cran.r-project.org/web/packages/factoextra/index.html. Accessed 27 June 2020.
Source: Ecology - nature.com