in

Mapping biodiversity hotspots of fish communities in subtropical streams through environmental DNA

  • 1.

    Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Encalada, A. C. et al. A global perspective on tropical montane rivers. Science 365, 1124–1129 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Winemiller, K. O. et al. Development and environment. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    McIntyre, P. B., Reidy Liermann, C. A. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl. Acad. Sci. U. S. A. 113, 12880–12885 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T.) (Bonn, Germany, 2019).

  • 6.

    Allen, D. J., Smith, K. G. & Darwall, W. R. T. The Status and Distribution of Freshwater Biodiversity in Indo-Burma (IUCN, 2012).

    Google Scholar 

  • 7.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, 960–967 (2019).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. U. S. A. 109, 5609–5614 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Itakura, H. et al. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale. Aquat. Conserv. 29, 361–373 (2019).

    Article 

    Google Scholar 

  • 13.

    Wallace, A. R. The Geographical Distribution of Animals: With a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth’s Surface (Macmillan and Co, 1876).

    Google Scholar 

  • 14.

    Kreft, H. & Jetz, W. A framework for delineating biogeographical regions based on species distributions: Global quantitative biogeographical regionalizations. J. Biogeogr. 37, 2029–2053 (2010).

    Article 

    Google Scholar 

  • 15.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. U. S. A. 112, 2076–2081 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Bush, A. et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. Proc. Natl. Acad. Sci. U. S. A. 117, 8539–8545 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Pawlowski, J., Apothéloz-Perret-Gentil, L. & Altermatt, F. Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol. 29, 4258–4264 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 22.

    Li, J. et al. Ground-truthing of a fish-based environmental DNA metabarcoding method for assessing the quality of lakes. J. Appl. Ecol. 56, 1232–1244 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Li, J. et al. Limited dispersion and quick degradation of environmental DNA in fish ponds inferred by metabarcoding. Environ. DNA 1, 238–250 (2019).

    Article 

    Google Scholar 

  • 24.

    Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Jerde, C. L. Can we manage fisheries with the inherent uncertainty from eDNA? J. Fish Biol. 98(2), 341–353 (2019).

  • 27.

    Bellemain, E. et al. Trails of river monsters: detecting critically endangered Mekong giant catfish Pangasianodon gigas using environmental DNA. Glob. Ecol. Conserv. 7, 148–156 (2016).

    Article 

    Google Scholar 

  • 28.

    Sakata, M. K., Maki, N., Sugiyama, H. & Minamoto, T. Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan. Naturwissenschaften 104, 100 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 29.

    Mizumoto, H., Urabe, H., Kanbe, T., Fukushima, M. & Araki, H. Establishing an environmental DNA method to detect and estimate the biomass of Sakhalin taimen, a critically endangered Asian salmonid. Limnology 19, 219–227 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes. Mol. Ecol. Resour. 19, 27–46 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 3085 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Doble, C. J. et al. Testing the performance of environmental DNA metabarcoding for surveying highly diverse tropical fish communities: a case study from Lake Tanganyika. Environ. DNA 2, 24–41 (2020).

    Article 

    Google Scholar 

  • 33.

    Altermatt, F. et al. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129, 607–618 (2020).

    Article 

    Google Scholar 

  • 34.

    Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Riaz, T. et al. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39, e145 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Baselga, A. & Orme, C. D. L. betapart : an R package for the study of beta diversity : betapart package. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar 

  • 40.

    Altermatt, F. Diversity in riverine metacommunities: a network perspective. Aquat. Ecol. 47, 365–377 (2013).

    Article 

    Google Scholar 

  • 41.

    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63, 141–163 (2018).

    Article 

    Google Scholar 

  • 42.

    Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453, 220–222 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Azaele, S., Muneepeerakul, R., Maritan, A., Rinaldo, A. & Rodriguez-Iturbe, I. Predicting spatial similarity of freshwater fish biodiversity. Proc. Natl. Acad. Sci. U. S. A. 106, 7058–7062 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Carrara, F., Altermatt, F., Rodriguez-Iturbe, I. & Rinaldo, A. Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proc. Natl. Acad. Sci. U. S. A. 109, 5761–5766 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Muneepeerakul, R., Bertuzzo, E., Rinaldo, A. & Rodriguez-Iturbe, I. Evolving biodiversity patterns in changing river networks. J. Theor. Biol. 2019(462), 418–424 (2019).

    MATH 
    Article 

    Google Scholar 

  • 46.

    Kang, B., Huang, X., Yan, Y., Yan, Y. & Lin, H. Continental-scale analysis of taxonomic and functional fish diversity in the Yangtze river. Glob. Ecol. Conserv. 15, e00442 (2018).

    Article 

    Google Scholar 

  • 47.

    Mächler, E. et al. Assessing different components of diversity across a river network using eDNA. Environ. DNA 1, 290–301 (2019).

    Article 

    Google Scholar 

  • 48.

    Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E. & Rinaldo, A. Estimating species distribution and abundance in river networks using environmental DNA. Proc. Natl. Acad. Sci. U. S. A. 115, 11724–11729 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Roux, D. J. et al. Designing protected areas to conserve riverine biodiversity: lessons from a hypothetical redesign of the Kruger National Park. Biol. Conserv. 141, 100–117 (2008).

    Article 

    Google Scholar 

  • 50.

    Troia, M. J. & McManamay, R. A. Biogeographic classification of streams using fish community– and trait–environment relationships. Divers Distrib 26, 108–125 (2020).

    Article 

    Google Scholar 

  • 51.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish Aquat. Sci. 37, 130–137 (1980).

    Article 

    Google Scholar 

  • 52.

    He, Y., Wang, J., Lek, S., Cao, W. & Lek-Ang, S. Structure of endemic fish assemblages in the upper Yangtze River Basin. River Res Appl 27, 59–75 (2011).

    Article 

    Google Scholar 

  • 53.

    Lawson Handley, L. et al. Temporal and spatial variation in distribution of fish environmental DNA in England’s largest lake. Environ. DNA 1, 26–39 (2019).

    Article 

    Google Scholar 

  • 54.

    Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).

    Book 

    Google Scholar 

  • 55.

    Monkolprasit, S., Sontirat, S., Vimollohakarn, S. & Songsirikul, T. Checklist of Fishes in Thailand: OEPP Biodiversity Series Vol. 4 (Office of Environmental Policy and Planning, 1997).

    Google Scholar 

  • 56.

    Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Blackman, R. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples—first record of Gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).

    Article 

    Google Scholar 

  • 58.

    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. Inter Journal, Complex Systems 1695: 1–9 (2006). R package version 1.2.5. Available from https://cran.r-project.org/web/packages/igraph/index.html. Accessed 27 June 2020.

  • 59.

    Oksanen, J. et al. vegan: Community Ecology Package 2.5-6. Available from https://CRAN.R-project.org/package=vegan. Accessed 27 June 2020.

  • 60.

    Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. ISBN 92-9059-179-X. Accessed 23 March 2021.

  • 61.

    Brock, G., Pihur, V., Datta, S. & Datta, S. clValid: An R Package for Cluster Validation. J Stat Softw 25: 1–22 (2008). R package version 0.6-9. Available from https://cran.r-project.org/web/packages/clValid/index.html. Accessed 27 June 2020.

  • 62.

    R Studio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. (2019).

  • 63.

    Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. (2020) R package version 1.0.7. Available from: https://cran.r-project.org/web/packages/factoextra/index.html. Accessed 27 June 2020.


  • Source: Ecology - nature.com

    Engineering complex communities by directed evolution

    Crowdsourcing data on road quality and excess fuel consumption