in

Mapping the benefits of nature in cities with the InVEST software

  • 1.

    United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (2019).

  • 2.

    Gouldson, A. et al. Accelerating Low-Carbon Development in the World’s Cities. Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate. New Climate Economy, London and Washington, DC. Available at: http://newclimateeconomy.report/misc/working-papers. (2015).

  • 3.

    Revi, A. et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Field, C. B. et al.) 1132 pp https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).

  • 4.

    Bartesaghi Koc, C., Osmond, P. & Peters, A. Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies. Urban Ecosyst. 20, 15–35 (2017).

    Google Scholar 

  • 5.

    Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29–38 (2019).

    Google Scholar 

  • 6.

    Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio. 43, 413–433 (2014).

    Google Scholar 

  • 7.

    van den Bosch, M. & Ode Sang, Å. Urban natural environments as nature-based solutions for improved public health—a systematic review of reviews. Environ. Res. 158, 373–384 (2017).

    Google Scholar 

  • 8.

    Depietri, Y. & McPhearson, T. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy and Practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 91–109, https://doi.org/10.1007/978-3-319-56091-5_6 (Springer International Publishing, 2017).

  • 9.

    Cortinovis, C. & Geneletti, D. A performance-based planning approach integrating supply and demand of urban ecosystem services. Landsc. Urban Plan. 201, 103842 (2020).

    Google Scholar 

  • 10.

    Lafortezza, R., Chen, J., van den Bosch, C. K. & Randrup, T. B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 165, 431–441 (2018).

    CAS 

    Google Scholar 

  • 11.

    European Union. Mapping and assessment of ecosystems and their services urban ecosystems 4th Report. https://ec.europa.eu/environment/nature/knowledge/ecosystem_assessment/pdf/102.pdf (2016).

  • 12.

    Sharp, R. S. et al. InVEST 3.8 User’s Guide. http://releases.naturalcapitalproject.org/invest-userguide/latest/. (2020).

  • 13.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 LP–270272 (2018).

    Google Scholar 

  • 14.

    Ruckelshaus, M. et al. Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol. Econ. 115, 11–21 (2015).

    Google Scholar 

  • 15.

    Grêt-Regamey, A., Sirén, E., Brunner, S. H. & Weibel, B. Review of decision support tools to operationalize the ecosystem services concept. Ecosyst. Serv. 26, 306–315 (2017).

    Google Scholar 

  • 16.

    Mandle, L. & Natural Capital Project. Database of publications using InVEST and other natural capital project software. https://purl.stanford.edu/bb284rg5424 (2019).

  • 17.

    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    CAS 

    Google Scholar 

  • 18.

    de Groot, R., Moolenaar, S., van Weelden, M., Konovska, I. & de Vente, J. The ESP Guidelines in a Nustshell. Ecosystem Services Partnership. FSD Working Paper 2018-09. (2018).

  • 19.

    Hamilton, S. H. et al. A framework for characterising and evaluating the effectiveness of environmental modelling. Environ. Model. Softw. 118, 83–98 (2019).

    Google Scholar 

  • 20.

    Creutzig, F. et al. Upscaling urban data science for global climate solutions. Glob. Sustain. 2, e2 (2019).

    Google Scholar 

  • 21.

    Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H. & Nowell, M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 104075 (2020).

    CAS 

    Google Scholar 

  • 22.

    Brugnach, M. & Pahl-Wostl, C. In Adaptive and Integrated Water Management: Coping with Complexity and Uncertainty (eds. Pahl-Wostl, C., Kabat, P. & Möltgen, J.) 187–203 https://doi.org/10.1007/978-3-540-75941-6_10 (Springer Berlin Heidelberg, 2008).

  • 23.

    Cash, D. W. et al. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 100, 8086–8091 (2003).

    CAS 

    Google Scholar 

  • 24.

    Haines-Young, R. & Potschin, M. In Ecosystem Ecology: A New Synthesis, BES Ecological Reviews Series, CUP (eds. Raffaelli, D. & Frid, C.) (2010).

  • 25.

    Tallis, H. et al. A global system for monitoring ecosystem service change. Bioscience 62, 977–986 (2012).

    Google Scholar 

  • 26.

    Burkhard, B., Kandziora, M., Hou, Y. & Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 34, 1–32 (2014).

    Google Scholar 

  • 27.

    Ma, G., Zhao, X., Wu, Q. & Pan, T. Concept definition and system construction of gross ecosystem product. Resour. Sci. 37, 1709–1715 (2015).

    Google Scholar 

  • 28.

    Ouyang, Z. et al. Gross ecosystem product concept accounting framework and case study. Acta Ecol. Sin. 33, 6747–6761 (2013).

    Google Scholar 

  • 29.

    Ouyang, Z. & Jin, L. Developing Gross Ecosystem Product and Ecological Asset Accounting for Eco-Compensation (Science Press, 2017).

  • 30.

    Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 117, 14593–14601 (2020).

    CAS 

    Google Scholar 

  • 31.

    SEEA. Experimental Ecosystem Accounting. System of Environmental-Economic Accounting 2012. https://seea.un.org/sites/seea.un.org/files/websitedocs/eea_final_en.pdf (2012).

  • 32.

    Office for National Statistics. UK Natural Capital: urban accounts. https://www.ons.gov.uk/economy/environmentalaccounts/bulletins/uknaturalcapital/urbanaccounts (2020).

  • 33.

    Polasky, S., Tallis, H. & Reyers, B. Setting the bar: standards for ecosystem services. Proc. Natl. Acad. Sci. USA 112, 7356–7361 (2015).

    CAS 

    Google Scholar 

  • 34.

    Turner, K., Badura, T. & Ferrini, S. Natural capital accounting perspectives: a pragmatic way forward. Ecosyst. Heal. Sustain. 5, 237–241 (2019).

    Google Scholar 

  • 35.

    Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).

    CAS 

    Google Scholar 

  • 36.

    Hueber, D. & Worzala, E. “Code Blue” for U.S. Golf Course Real Estate Development: “Code Green” for Sustainable Golf Course Redevelopment. J. Sustain. Real Estate http://www.josre.org/wp-content/uploads/2012/09/Sustainable_Golf_Courses-Hueber-JOSRE1.pdf (2010).

  • 37.

    Ingram, M. A., Hoke, L. & Meyer, J. The declining economic viability of municipal golf courses. Public Munic. Financ. 2, 46–55 (2013).

  • 38.

    Ossola, A. et al. The provision of urban ecosystem services throughout the private-social-public domain: a conceptual framework. Cities Environ. 11, 1–15 (2018).

    Google Scholar 

  • 39.

    IDEFESE. Modeling and mapping ecosystem services for sustainable urban planning decisions. https://idefese.wordpress.com/ (2020).

  • 40.

    Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).

    Google Scholar 

  • 41.

    Langemeyer, J. & Connolly, J. J. T. Weaving notions of justice into urban ecosystem services research and practice. Environ. Sci. Policy 109, 1–14 (2020).

    Google Scholar 

  • 42.

    Kremer, P. et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 21, 29 (2016).

  • 43.

    Andersson, E., Borgström, S. T. & McPhearson, T. Double Insurance in Dealing with Extremes: Ecological and social factors for making nature-based solutions. In nature-based solutions to climate change adaptation in urban areas: Linkages between science, policy and practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 51–64 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-56091-5_4.

  • 44.

    Nagendra, H., Bai, X., Brondizio, E. S. & Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 1, 341–349 (2018).

    Google Scholar 

  • 45.

    Cortinovis, C. & Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 70, 298–312 (2018).

    Google Scholar 

  • 46.

    Barnett, C. & Parnell, S. Ideas, implementation and indicators: epistemologies of the post-2015 urban agenda. Environ. Urban. 28, 87–98 (2016).

    Google Scholar 

  • 47.

    Sarabi, S. E., Han, Q., Romme, A. G. L., Vries, Bde & Wendling, L. Key enablers of and barriers to the uptake and implementation of nature-based solutions in urban settings: a review. Resources 8, 121 (2019).

    Google Scholar 

  • 48.

    Wamsler, C. et al. Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod. 247, 119154 (2020).

    Google Scholar 

  • 49.

    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).

    Google Scholar 

  • 50.

    McDonald, R. I., Kroeger, T., Zhang, P. & Hamel, P. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23, 137–150 (2019).

    Google Scholar 

  • 51.

    McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).

    Google Scholar 

  • 52.

    Song, X. P., Richards, D., Edwards, P. & Tan, P. Y. Benefits of trees in tropical cities. Science 356, 1241 LP–1241241 (2017).

    Google Scholar 

  • 53.

    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).

    Google Scholar 

  • 54.

    Cabral, P., Feger, C., Levrel, H., Chambolle, M. & Basque, D. Assessing the impact of land-cover changes on ecosystem services: A first step toward integrative planning in Bordeaux. France. Ecosyst. Serv. 22, 318–327 (2016).

    Google Scholar 

  • 55.

    Levrel, H., Cabral, P., Feger, C., Chambolle, M. & Basque, D. How to overcome the implementation gap in ecosystem services? A user-friendly and inclusive tool for improved urban management. Land Use Policy 68, 574–584 (2017).

    Google Scholar 

  • 56.

    Sudmanns, M., Tiede, D., Augustin, H. & Lang, S. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. Int. J. Digit. Earth 13, 768–784 (2020).

    Google Scholar 

  • 57.

    Samuelsson, K., Barthel, S., Colding, J., Macassa, G. & Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. Landsc. Urban Plan. https://doi.org/10.31219/osf.io/3wx5a (2020).

  • 58.

    OECD. The territorial impact of COVID-19: Managing the crisis across levels of government. https://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-covid-19-managing-the-crisis-across-levels-of-government-d3e314e1/ (2020).

  • 59.

    McDonald, R. I., Colbert, M., Hamann, M., Simkin, R. & Walsh, B. Nature in the Urban Century. https://www.nature.org/content/dam/tnc/nature/en/documents/TNC_NatureintheUrbanCentury_FullReport.pdf (2018).

  • 60.

    Endreny, T. et al. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Modell. 360, 328–335 (2017).

    Google Scholar 

  • 61.

    UrbanFootprint. The ultimate technical guideguide to UrbanFootprint. https://urbanfootprint.com/ (2017).

  • 62.

    EnvisionTomorrow. Web-based Envision Tomorrow 1.0 Technical Documentation. http://envisiontomorrow.org/et-publications (2014).

  • 63.

    Galle, N. J., Nitoslawski, S. A. & Pilla, F. The internet of nature: How taking nature online can shape urban ecosystems. Anthr. Rev. 6, 279–287 (2019).

    Google Scholar 

  • 64.

    Natural capital project. Incorporating climate change scenarios into InVEST and RIOS. https://naturalcapitalproject.stanford.edu/sites/g/files/sbiybj9321/f/publications/incorporating-climate-change-scenarios-into-invest-and-rios-2016-01-11.pdf (2016).

  • 65.

    Rosenthal, A. et al. Process matters: a framework for conducting decision-relevant assessments of ecosystem services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 11, 190–204 (2015).

    Google Scholar 

  • 66.

    Jakeman, A. J., Letcher, R. A. & Norton, J. P. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw. 21, 602–614 (2006).

    Google Scholar 

  • 67.

    McKenzie, E. et al. Understanding the use of ecosystem service knowledge in decision making: Lessons from international experiences of spatial planning. Environ. Plan. C Gov. Policy 32, 320–340 (2014).

    Google Scholar 

  • 68.

    Hamel, P. & Bryant, B. P. Uncertainty assessment in ecosystem services analyses: seven challenges and practical responses. Ecosyst. Serv. 24, 1–15 (2017).

  • 69.

    Markevych, I. et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 158, 301–317 (2017).

    CAS 

    Google Scholar 

  • 70.

    Lonsdorf, E. V., Nootenboom, C., Janke, B. & Horgan, B. P. Assessing urban ecosystem services provided by green infrastructure: Golf courses in the Minneapolis-St. Paul metro area. Landsc. Urban Plan. 208, 104022 (2021).

    Google Scholar 

  • 71.

    Ricketts, T. H. & Lonsdorf, E. Mapping the margin: comparing marginal values of tropical forest remnants for pollination services. Ecol. Appl. 23, 1113–1123 (2013).

    Google Scholar 

  • 72.

    Tardieu, L., Coste, L., Levrel, H. & Viguié, V. Les services rendus par la nature peuvent-ils devenir un levier d’action dans les décisions d’aménagement? https://idefese.files.wordpress.com/2019/08/rapport_idefese1_2019_cadredecisionnel.pdf (2019).

  • 73.

    Liotta, C., Kervinio, Y., Levrel, H. & Tardieu, L. Planning for environmental justice—reducing well-being inequalities through urban greening. Environ. Sci. Policy 112, 47–60 (2020).

    Google Scholar 

  • 74.

    Hamel. P. et al. Metadata record for the manuscript: Mapping the benefits of nature in cities with the InVEST software. figshare https://doi.org/10.6084/m9.figshare.13910660 (2021).

  • 75.

    Burkhard, B., Kandziora, M., Hou, Y. & Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 34, 1–32 (2014).

    Google Scholar 

  • 76.

    Hamel, P., Tardieu, L., Lemonsu, A., de Munck, C. & Viguié, V. Co-developing the InVEST urban cooling module. In French: Co-développement du module rafraîchissement offert par la végétation de l’outil InVEST. https://idefese.wordpress.com (2020).

  • 77.

    Bosch, M. et al. A spatially-explicit approach to simulate urban heat islands in complex urban landscapes. Geosci. Model Dev. (2020) [preprint] in review.

  • 78.

    Hamel, P. et al. Stormwater management services maps for the San Francisco Bay Area. Working paper. https://naturalcapitalproject.stanford.edu (2019).

  • 79.

    Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).

    Google Scholar 

  • 80.

    Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 3, 913–918 (2013).

    Google Scholar 

  • 81.

    Keeler, B. et al. Recreational demand for clean water: evidence from geotagged photographs by visitors to lakes. Front. Ecol. Environ. 13, 76–81 (2015).

  • 82.

    Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 3, 2976 (2013).

    Google Scholar 

  • 83.

    Liu, H., Remme, R. P., Hamel, P., Nong, H. & Ren, H. Supply and demand assessment of urban recreation service and its implication for greenspace planning-A case study on Guangzhou. Landsc. Urban Plan. 203, 103898 (2020).

    Google Scholar 

  • 84.

    Griffin, R. et al. Incorporating the visibility of coastal energy infrastructure into multi-criteria siting decisions. Mar. Policy 62, 218–223 (2015).

    Google Scholar 

  • 85.

    Lonsdorf, E. et al. Modelling pollination services across agricultural landscapes. Ann. Bot. 103, 1589–1600 (2009).

    Google Scholar 

  • 86.

    Davis, A. Y. et al. Enhancing pollination supply in an urban ecosystem through landscape modifications. Landsc. Urban Plan. 162, 157–166 (2017).

    Google Scholar 

  • 87.

    Hamel, P., Chaplin-Kramer, R., Sim, S. & Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 524–525, 166–177 (2015).

  • 88.

    Redhead, J. W. et al. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 610–611, 666–677(2018).


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere