in

Marine signature taxa and core microbial community stability along latitudinal and vertical gradients in sediments of the deepest freshwater lake

  • 1.

    UNDP-GEF. The ecological atlas of the Baikal basin. United Nations Office for Project Sercives (UNOPS). 2015. p 145. http://baikal.iwlearn.org/en.

  • 2.

    Moore MV, Hampton SE, Izmest’eva LR, Silow EA, Peshkova EV, Pavlov BK. Climate change and the world’s “Sacred Sea”—Lake Baikal, Siberia. Bioscience. 2009;59:405–17.

    Article 

    Google Scholar 

  • 3.

    Granin NG, Aslamov IA, Kozlov VV, Makarov MM, Kirillin G, McGinnis DF, et al. Methane hydrate emergence from Lake Baikal: direct observations, modelling, and hydrate footprints in seasonal ice cover. Sci Rep. 2019;9:19361.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol. 2000;66:5053–65.

    Article 

    Google Scholar 

  • 5.

    Kurilkina MI, Zakharova YR, Galachyants YP, Petrova DP, Bukin YS, Domysheva VM et al. Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol. 2016;92:fiw094.

  • 6.

    Zakharenko AS, Galachyants YP, Morozov IV, Shubenkova OV, Morozov AA, Ivanov VG, et al. Bacterial communities in areas of oil and methane seeps in pelagic of Lake Baikal. Micro Ecol. 2019;78:269–85.

    CAS 
    Article 

    Google Scholar 

  • 7.

    Yi Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol Ecol. 2017;93:10.

    Article 

    Google Scholar 

  • 8.

    David GM, Moreira D, Reboul G, Annenkova NV, Galindo LJ, Bertolino P, et al. Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake. Environ Microbiol. 2021;23:1436–51.

    CAS 
    Article 

    Google Scholar 

  • 9.

    Annenkova NV, Giner CR, Logares R. Tracing the origin of planktonic protists in an ancient lake. Microorganisms. 2020;8:543.

  • 10.

    Lomakina AV, Mamaeva EV, Galachyants YP, Petrova DP, Pogodaeva TV, Shubenkova OV, et al. Diversity of archaea in bottom sediments of the discharge areas with oil- and gas-bearing fluids in Lake Baikal. Geomicrobiol J. 2018;35:50–63.

    CAS 
    Article 

    Google Scholar 

  • 11.

    Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018;16:629–45.

    CAS 
    Article 

    Google Scholar 

  • 12.

    Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA. 2008;105:10583–1058.

    CAS 
    Article 

    Google Scholar 

  • 13.

    Spring S, Bunk B, Sproer C, Rohde M, Klenk HP. Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments. Environ Microbiol. 2018;20:2438–55.

    CAS 
    Article 

    Google Scholar 

  • 14.

    Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol. 2013;15:1759–71.

    CAS 
    Article 

    Google Scholar 

  • 15.

    Dombrowski N, Seitz KW, Teske AP, Baker BJ. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 2017;5:106.

    Article 

    Google Scholar 

  • 16.

    Roberts SL, Swann GEA, McGowan S, Panizzo VN, Vologina EG, Sturm M, et al. Diatom evidence of 20th century ecosystem change in Lake Baikal, Siberia. PLoS One. 2018;13:e0208765.

    Article 

    Google Scholar 

  • 17.

    Mukherjee I, Hodoki Y, Okazaki Y, Fujinaga S, Ohbayashi K, Nakano SI. Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front Microbiol. 2019;10:2375.

    Article 

    Google Scholar 

  • 18.

    Zemskaya TI, Cabello-Yeves PJ, Pavlova ON, Rodriguez-Valera F. Microorganisms of Lake Baikal—the deepest and most ancient lake on Earth. Appl Microbiol Biotechnol. 2020;104:6079–90.

  • 19.

    Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.

    CAS 
    Article 

    Google Scholar 

  • 20.

    Paver SF, Muratore D, Newton RJ, Coleman ML. Reevaluating the salty divide: phylogenetic specificity of transitions between marine and freshwater systems. mSystems. 2018; 3:e00232–18.


  • Source: Ecology - nature.com

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture