in

Massive soybean expansion in South America since 2000 and implications for conservation

  • 1.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Graesser, J., Ramankutty, N. & Coomes, O. T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 13, 084021 (2018).

    Article 

    Google Scholar 

  • 8.

    Zalles, V. et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl Acad. Sci. USA 116, 428–435 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    FAOSTAT (FAO, 2019); http://www.fao.org/faostat

  • 10.

    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article 

    Google Scholar 

  • 11.

    Fuchs, R. et al. Why the US–China trade war spells disaster for the Amazon. Nature 567, 451–454 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    Article 

    Google Scholar 

  • 13.

    Rudorff, B. F. T. et al. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).

    Article 

    Google Scholar 

  • 14.

    Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Gollnow, F., Hissa, Ld. B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).

    Article 

    Google Scholar 

  • 17.

    Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. https://doi.org/10.1111/conl.12671 (2019).

  • 18.

    Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).

    Article 

    Google Scholar 

  • 19.

    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 12, 025004 (2017).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).

    Article 

    Google Scholar 

  • 21.

    Rajão, R. et al. The rotten apples of Brazil’s agribusiness. Science 369, 246–248 (2020).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon soy moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).

    Article 

    Google Scholar 

  • 23.

    Cerrado Manifesto. The Future of the Cerrado in the Hands of the Market: Deforestation and Native Vegetation Conversion Must Be Stopped (2017); http://d3nehc6yl9qzo4.cloudfront.net/downloads/cerradoconversionzero_sept2017_2.pdf

  • 24.

    Meyfroidt, P. et al. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 9, 074012 (2014).

    Article 

    Google Scholar 

  • 25.

    PRODES (INPE, 2019); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

  • 26.

    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).

    Article 

    Google Scholar 

  • 27.

    Argentina: Oilseeds and Products Annual (USDA Foreign Agricultural Service, 2016).

  • 28.

    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).

    Article 

    Google Scholar 

  • 31.

    Gasparri, N. I. & le Polain de Waroux, Y. The coupling of South American soybean and cattle production frontiers: new challenges for conservation policy and land change science. Conserv. Lett. 8, 290–298 (2015).

    Article 

    Google Scholar 

  • 32.

    Fehlenberg, V. et al. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Glob. Environ. Change 45, 24–34 (2017).

    Article 

    Google Scholar 

  • 33.

    le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).

    Article 

    Google Scholar 

  • 34.

    Tyukavina, A. et al. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 3, e1601047 (2017).

    Article 

    Google Scholar 

  • 35.

    De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).

    Article 

    Google Scholar 

  • 36.

    Fearnside, P. M. Soybean cultivation as a threat to the environment in Brazil. Environ. Conserv. 28, 23–38 (2002).

    Article 

    Google Scholar 

  • 37.

    Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/5/2/024002 (2010).

  • 38.

    Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: the 2012 Revision (FAO, 2012).

    Google Scholar 

  • 40.

    Brandão, A. Jr et al. Estimating the potential for conservation and farming in the Amazon and Cerrado under four policy scenarios. Sustainability https://doi.org/10.3390/su12031277 (2020).

  • 41.

    Martini, D. Z., Moreira, M. A., Cruz de Aragão, L. E. Oe, Formaggio, A. R. & Dalla-Nora, E. L. Potential land availability for agricultural expansion in the Brazilian Amazon. Land Use Policy 49, 35–42 (2015).

    Article 

    Google Scholar 

  • 42.

    Hunke, P., Mueller, E. N., Schröder, B. & Zeilhofer, P. The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8, 1154–1180 (2014).

    Article 

    Google Scholar 

  • 43.

    Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbágy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206, 60–70 (2015).

    Article 

    Google Scholar 

  • 44.

    Schulz, C. et al. Physical, ecological and human dimensions of environmental change in Brazil’s Pantanal wetland: synthesis and research agenda. Sci. Total Environ. 687, 1011–1027 (2019).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Weinhold, D., Killick, E. & Reis, E. J. Soybeans, poverty and inequality in the Brazilian Amazon. World Dev. 52, 132–143 (2013).

    Article 

    Google Scholar 

  • 46.

    Garrett, R. D. & Rausch, L. L. Green for gold: social and ecological tradeoffs influencing the sustainability of the Brazilian soy industry. J. Peasant Stud. 43, 461–493 (2016).

    Article 

    Google Scholar 

  • 47.

    Oliveira, G. & Hecht, S. Sacred groves, sacrifice zones and soy production: globalization, intensification and neo-nature in South America. J. Peasant Stud. 43, 251–285 (2016).

    Article 

    Google Scholar 

  • 48.

    Garrett, R. D. et al. Intensification in agriculture-forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).

    Article 

    Google Scholar 

  • 49.

    Song, X.-P. et al. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 190, 383–395 (2017).

    Article 

    Google Scholar 

  • 50.

    King, L. et al. A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sens. Environ. 195, 13–29 (2017).

    Article 

    Google Scholar 

  • 51.

    Potapov, P. et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000-2017 Landsat time-series. Remote Sens. Environ. 232, 111278 (2019).

    Article 

    Google Scholar 

  • 52.

    Potapov, P. et al. Landsat analysis ready data for global land cover and land cover change mapping. Remote Sens. 12, 426 (2020).

    Article 

    Google Scholar 

  • 53.

    Global Forest Resources Assessment 2015 (FAO, 2015).

  • 54.

    Brazil’s Submission of a Forest Reference Emission Level (FREL) for Reducing Emissions from Deforestation in the Amazonia Biome for REDD+ Results-Based Payments Under the UNFCCC from 2016 to 2020 (Ministry of Environment of Brazil, 2018); https://redd.unfccc.int/files/2018_frel_submission_brazil.pdf

  • 55.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 56.

    Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Beating in on a stable partnership

    Tiny particles power chemical reactions