in

Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils

[adace-ad id="91168"]
  • 1.

    Spiertz, J. H. J. Nitrogen, sustainable agriculture and food security: a review. Agron. Sustain. Dev. 30, 43–55. https://doi.org/10.1051/agro:2008064 (2010).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529. https://doi.org/10.1146/annurev.micro.55.1.485 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Gelfand, I. & Yakir, D. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest. Soil Biol. Biochem. 40, 415–424. https://doi.org/10.1016/j.soilbio.2007.09.005 (2008).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Subbarao, G. V. et al. Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit. Rev. Plant Sci. 25, 303–335. https://doi.org/10.1080/07352680600794232 (2006).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Shen, T., Stieglmeier, M., Dai, J., Urich, T. & Schleper, C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol. Lett. 344, 121–129, https://doi.org/10.1111/1574-6968.12164 (2013).

  • 7.

    Prosser, J. I., Head, I. M. & Stein, L. Y. in The Prokaryotes – Alphaproteobacteria and Betaproteobacteria (ed DeLong Rosenberg E., E.F., Lory, S., Stackebrandt, E., Thompson, F.) 901–918 (Springer-Verlag, 2014).

  • 8.

    Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing gamma-proteobacterium from soil. ISME J. 11, 1130–1141. https://doi.org/10.1038/ismej.2016.191 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Alves, R.J.E., Minh, B.Q, Urich, T., von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-03861-1 (2018).

  • 10.

    Wang, H. Et al. Distinct distribution of archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.576661 (2020).

  • 11.

    Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531. https://doi.org/10.1016/j.tim.2012.08.001 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Pester, M. et al. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ. Microbiol. 14, 525–539. https://doi.org/10.1111/j.1462-2920.2011.02666.x (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Spang, A. et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ. Microbiol. 14, 3122–3145. https://doi.org/10.1111/j.1462-2920.2012.02893.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509. https://doi.org/10.1038/nature16461 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    van Kessel, M. A. et al. Complete nitrification by a single microorganism. Nature 528, 555–559. https://doi.org/10.1038/nature16459 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Junier, P. et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85, 425–440. https://doi.org/10.1007/s00253-009-2228-9 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809. https://doi.org/10.1038/nature04983 (2006).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Zhalnina, K. et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 104, https://doi.org/10.3389/fmicb.2013.00104 (2013).

  • 19.

    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508. https://doi.org/10.3389/fmicb.2017.01508 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Palomo, A., Dechesne, A. & Smets, B. F. Genomic profiling of Nitrospira species reveals ecological success of comammox Nitrospira. bioRxiv, 612226, https://doi.org/10.1101/612226 (2019).

  • 21.

    Poghosyan, L. et al. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ. Microbiol. 21, 3627–3637. https://doi.org/10.1111/1462-2920.14691 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Palomo, A. et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J. 12, 1779–1793. https://doi.org/10.1038/s41396-018-0083-3 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794. https://doi.org/10.1038/nature04647 (2006).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol. Biochem. 33, 853–866. https://doi.org/10.1016/s0038-0717(00)00247-9 (2001).

    Article 

    Google Scholar 

  • 25.

    Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA. 108, 8420–8425. https://doi.org/10.1073/pnas.1013488108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Arp, D. J., Chain, P. S. G. & Klotz, M. G. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu. Rev. Microbiol. 61, 503–528 (2007).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Simon, J. & Klotz, M. G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta 114–135, 2013. https://doi.org/10.1016/j.bbabio.2012.07.005 (1827).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 107, 8818–8823. https://doi.org/10.1073/pnas.0913533107 (2010).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biol. Biochem. 138, https://doi.org/10.1016/j.soilbio.2019.107609 (2019).

  • 30.

    Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biol. Biochem. 149, https://doi.org/10.1016/j.soilbio.2020.107925 (2020).

  • 31.

    Daims, H., Lucker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712. https://doi.org/10.1016/j.tim.2016.05.004 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Castelle, C. J. et al. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat. Commun. 4, 2120. https://doi.org/10.1038/ncomms3120 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Sorokin, D. Y. et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256. https://doi.org/10.1038/ismej.2012.70 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Lucker, S. et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl. Acad. Sci. USA. 107, 13479–13484. https://doi.org/10.1073/pnas.1003860107 (2010).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Mendum, T. A., Sockett, R. E. & Hirsch, P. R. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl. Environ. Microbiol. 65, 4155–4162 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Hirsch, P. R. et al. Soil resilience and recovery: rapid community responses to management changes. Plant Soil 412, 283–297. https://doi.org/10.1007/s11104-016-3068-x (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Hirsch, P. R., Mauchline, T. H. & Clark, I. M. Culture-independent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42, 878–887. https://doi.org/10.1016/j.soilbio.2010.02.019 (2010).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Vetrovsky, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923. https://doi.org/10.1371/journal.pone.0057923 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Fu, Q.L., Clark, I.M., Zhu, J., Hu, H.Q. & Hirsch, P.R The short-term effects of nitrification inhibitors on the abundance and expression of ammonia. and nitrite oxidizers in a long-term field experiment comparing land management. Biol Fertil Soils. 54, 163–172. https://doi.org/10.1007/s00374-017-1249-2 (2018).

  • 40.

    Bollmann, A., Schmidt, I., Saunders, A. M. & Nicolaisen, M. H. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Appl. Environ. Microbiol. 71, 1276–1282. https://doi.org/10.1128/aem.71.3.1276-1282.2005 (2005).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. J. Soils Sediments 20, 621–628. https://doi.org/10.1007/s11368-019-02442-z (2020).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189. https://doi.org/10.1007/s00253-018-9486-3 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Placella, S. A. & Firestone, M. K. Transcriptional response of nitrifying communities to wetting of dry soil. Appl. Environ. Microbiol. 79, 3294–3302. https://doi.org/10.1128/AEM.00404-13 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Hirsch, P. R. et al. Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities. Soil Biol. Biochem. 41, 2021–2024. https://doi.org/10.1016/j.soilbio.2009.07.011 (2009).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Clark, I. M., Buchkina, N., Jhurreea, D., Goulding, K. W. & Hirsch, P. R. Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1235–1244, https://doi.org/10.1098/rstb.2011.0314 (2012).

  • 46.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Meth. 12, 59–60 (2015).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386. https://doi.org/10.1101/gr.5969107 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Finding common ground in Malden

    A large dataset of detection and submeter-accurate 3-D trajectories of juvenile Chinook salmon