in

Metal concentrations in coastal sharks from The Bahamas with a focus on the Caribbean Reef shark

  • 1.

    Mendil, D. et al. Determination of trace metal levels in seven fish species in lakes in Tokat, Turkey. Food Chem. 90, 175–179 (2005).

    CAS  Article  Google Scholar 

  • 2.

    Kennish, M. J. Pollution in estuaries and coastal marine waters. J. Coast. Res. 12, 27–49 (1994).

    Google Scholar 

  • 3.

    de Souza Machado, A. A., Spencer, K., Kloas, W., Toffolon, M. & Zarfl, C. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total Environ. 541, 268–281 (2016).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 4.

    Mamtani, R., Stern, P., Dawood, I. & Cheema, S. Metals and disease: A global primary health care perspective. J. Toxicol. 2011, 1–11 (2011).

    Article  CAS  Google Scholar 

  • 5.

    van Dam, J. W., Negri, A. P., Uthicke, S. & Mueller, J. F. Chemical pollution on coral reefs: Exposure and ecological effects. In Ecological Impacts of Toxic Chemicals (eds Sanchez-Bayo, F. et al.) 187–211 (Bentham Science Publishers, Oak Park, 2011).

    Google Scholar 

  • 6.

    Dong, W. et al. Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. PeerJ 4, e2282 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Morcillo, P., Esteban, M. A. & Cuesta, A. Mercury and its toxic effects on fish. AIMS Environ. Sci. 4, 386 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E. & Hoffman, L. C. Heavy metal accumulation and toxicity in smoothhound (Mustelus mustelus) shark from Langebaan Lagoon, South Africa. Food Chem. 190, 871–878 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Fisher, N. S. & Reinfelder, J. R. The trophic transfer of metals in marine systems. In Metal Speciation and Bioavailability in Aquatic Systems, Vol. 3 (eds. Tessier, A. & Turner, D. R.) 407–411, 363–406 (Wiley, Chichester, 1995).

  • 10.

    Ali, H. & Khan, E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ. Chem. Lett. 16, 903–917 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Domi, N., Bouquegneau, J. M. & Das, K. Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis. Mar. Environ. Res. 60, 551–569 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Rumbold, D., Wasno, B., Hammerschlag, N. & Volety, A. Mercury accumulation in sharks from the coastal waters of Southwest Florida. Arch. Environ. Contam. Toxicol. 67, 402–412 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Lee, C. S. et al. Declining mercury concentrations in bluefin tuna reflect reduced emissions to the North Atlantic Ocean. Environ. Sci. Technol. 50, 12825–12830 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Merly, L. et al. Blood plasma levels of heavy metals and trace elements in white sharks (Carcharodon carcharias) and potential health consequences. Mar. Pollut. Bull. 142, 85–92 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Fisk, A. T., Tittlemier, S. A., Pranschke, J. L. & Norstrom, R. J. Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland sharks. Ecology 83, 2162–2172 (2002).

    Article  Google Scholar 

  • 16.

    Buck, D. G. et al. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 687, 956–966 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Tiktak, G. P. et al. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. Mar. Pollut. Bull. 160, 111701 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Boening, D. W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 40, 1335–1351 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Sevcikova, M., Modra, H., Slaninova, A. & Svobodova, Z. Metals as a cause of oxidative stress in fish: A review. Vet. Med. 56, 537–546 (2011).

    CAS  Article  Google Scholar 

  • 20.

    Bezerra, M. F., Lacerda, L. D. & Lai, C. T. Trace metals and persistent organic pollutants contamination in batoids (Chondrichthyes: Batoidea): A systematic review. Environ. Pollut. 248, 684–695 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Cortés, E. Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci. 56, 707–717 (1999).

    Article  Google Scholar 

  • 22.

    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Shipley, O. N., Gallagher, A. J., Shiffman, D. S., Kaufman, L. & Hammerschlag, N. Diverse resource-use strategies in a large-bodied marine predator guild: Evidence from differential use of resource subsidies and intraspecific isotopic variation. Mar. Ecol. Prog. Ser. 623, 71–83 (2019).

    ADS  Article  Google Scholar 

  • 24.

    Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31, 395–407 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the Anthropocene. Trends Ecol. Evol. 34, 369–383 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Dent, F. & Clarke, S. State of the global market for shark products. FAO Fisheries and Aquaculture Technical Paper, 590 (2015).

  • 27.

    Buchan, K. C. The Bahamas. Mar. Pollut. Bull. 41, 94–111 (2000).

    CAS  Article  Google Scholar 

  • 28.

    Brooks, E. J., Sloman, K. A., Sims, D. W. & Danylchuk, A. J. Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endanger. Spec. Res. 13, 231–243 (2011).

    Article  Google Scholar 

  • 29.

    Zhu, Y., Newman, S. P., Reid, W. D. & Polunin, N. V. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160 (2019).

    Article  Google Scholar 

  • 30.

    Burgess, G. H. & Fordham, S. V. Regional overviews. In Sharks, Rays & Chimaeras: The Status of Chondrichthyan Fishes (eds. Fowler, S. L. et al.) 461 (IUCN/SSG Shark Specialist Group, Gland, 2005).

  • 31.

    Sherman, K. D. et al. Contemporary and emerging fisheries in The Bahamas—Conservation and management challenges, achievements and future directions. Fish. Manag. Ecol. 25, 319–331 (2018).

    Article  Google Scholar 

  • 32.

    Ward-Paige, C. A. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).

    Article  Google Scholar 

  • 33.

    Hammerschlag, N., Gallagher, A. J., Wester, J., Luo, J. & Ault, J. S. Don’t bite the hand that feeds: Assessing ecological impacts of provisioning ecotourism on an apex marine predator. Funct. Ecol. 26, 567–576 (2012).

    Article  Google Scholar 

  • 34.

    Graham, F. et al. Use of marine protected areas and exclusive economic zones in the subtropical western North Atlantic Ocean by large highly mobile sharks. Divers. Distrib. 22, 534–546 (2016).

    Article  Google Scholar 

  • 35.

    Chapman, D. D., Pikitch, E. K., Babcock, E. A. & Shivji, M. S. Deep-diving and diel changes in vertical habitat use by Caribbean reef sharks Carcharhinus perezi. Mar. Ecol. Prog. Ser. 344, 271–275 (2007).

    ADS  Article  Google Scholar 

  • 36.

    Shipley, O. N. et al. Horizontal and vertical movements of Caribbean reef sharks (Carcharhinus perezi): Conservation implications of limited migration in a marine sanctuary. R. Soc. Open Sci. 4, 160611 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Shipley, O. N. et al. Fine-scale movement and activity patterns of Caribbean reef sharks (Carcharhinus perezi) in the Bahamas. Environ. Biol. Fish. 101, 1097–1104 (2018).

    Article  Google Scholar 

  • 38.

    Rosa, R.S., Mancini, P., Caldas, J.P., Graham, R.T. Carcharhinus pereziThe IUCN Red List of Threatened Species 2006: e.T60217A12323052. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60217A12323052.en (2006). Accessed 23 Aug 19.

  • 39.

    Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84) (2017).

  • 40.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC Press, Boca Raton, 2017).

    Google Scholar 

  • 41.

    Adams, D. H. & McMichael, R. H. Jr. Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish. Bull. 97, 372–379 (1999).

    Google Scholar 

  • 42.

    Matulik, A. G. et al. Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Mar. Polllut. Bull. 116, 357–364 (2017).

    CAS  Article  Google Scholar 

  • 43.

    Gelsleichter, J., Sparkman, G., Howey, L. A., Brooks, E. J. & Shipley, O. N. Elevated accumulation of the toxic metal mercury in the Critically Endangered oceanic whitetip shark Carcharhinus longimanus from the northwestern Atlantic Ocean. Endanger. Spec. Res. 43, 267–279 (2020).

    Article  Google Scholar 

  • 44.

    Hammerschlag, N., Skubel, R. A., Sulikowski, J., Irschick, D. J. & Gallagher, A. J. A comparison of reproductive and energetic states in a marine apex predator (the tiger shark, Galeocerdo cuvier). Physiol. Biochem. Zool. 91, 933–942 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Froese, R., & Pauly, D. FishBase, version (06/2017). World Wide Web Electronic Publication (2017). Accessed 23 Aug 19.

  • 46.

    Pikitch, E. K., Chapman, D. D., Babcock, E. A. & Shivji, M. S. Habitat use and demographic population structure of elasmobranchs at a Caribbean atoll (Glover’s Reef, Belize). Mar. Ecol. Prog. Ser. 302, 187–197 (2005).

    ADS  Article  Google Scholar 

  • 47.

    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Castro-González, M. I. & Méndez-Armenta, M. Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Pharmacol. 26, 263–271 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 49.

    Amirah, M. N., Afiza, A. S., Faizal, W. I. W., Nurliyana, M. H. & Laili, S. Human health risk assessment of metal contamination through consumption of fish. J. Environ. Pollut. Hum. Health 1, 1–5 (2013).

    Google Scholar 

  • 50.

    Lyons, K. et al. Species-specific characteristics influence contaminant accumulation trajectories and signatures across ontogeny in three pelagic shark species. Environ. Sci. Technol. 53, 6997–7006 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Rejomon, G., Nair, M. & Joseph, T. Trace metal dynamics in fishes from the southwest coast of India. Environ. Monit. Assess. 167, 243–255 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Shipley, O. N. et al. Trophodynamics and mercury bioaccumulation in reef and open-ocean fishes from The Bahamas with a focus on two teleost predators. Mar. Ecol. Prog Ser. 608, 221–232 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Karimi, R., Fisher, N. S. & Folt, C. L. Multielement stoichiometry in aquatic invertebrates: When growth dilution matters. Am. Nat. 176, 699–709 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Choy, C. A., Popp, B. N., Kaneko, J. J. & Drazen, J. C. The influence of depth on mercury levels in pelagic fishes and their prey. Proc. Natl. Acad. Sci. U. S. A. 106, 13865–13869 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Lacerda, L. D., Goyanna, F., Bezerra, M. F. & Silva, G. B. Mercury concentrations in tuna (Thunnus albacares and Thunnus obesus) from the Brazilian Equatorial Atlantic Ocean. B Eniviron. Contam. Toxicol. 98, 49–155 (2017).

    Google Scholar 

  • 56.

    Lee, C. S. & Fisher, N. S. Methylmercury uptake by diverse marine phytoplankton. Limnol. Oceanogr. 61, 1626–1639 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Mohammed, A. & Mohammed, T. Mercury, arsenic, cadmium and lead in two commercial shark species (Sphyrna lewini and Caraharinus porosus) in Trinidad and Tobago. Mar. Pollut. Bull. 119, 214–218 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Burger, J. et al. Metal levels in fish from the Savannah River: potential hazards to fish and other receptors. Environ Res 89, 85–97 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Kim, S. W. et al. Heavy metal accumulation in and food safety of shark meat from Jeju island, Republic of Korea. PLoS ONE 14, e0212410 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Roesijadi, G. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol. 22, 81–113 (1992).

    CAS  Article  Google Scholar 

  • 61.

    Palmiter, R. D. The elusive function of metallothioneins. Proc. Natl. Acad. Sci. U. S. A. 95, 8428–8430 (1998).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Pagenkopf, G. K. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Environ. Sci. Technol. 17, 342–347 (1983).

    ADS  CAS  Article  Google Scholar 

  • 63.

    Playle, R. C. Modelling metal interactions at fish gills. Sci. Total Environ. 219, 147–163 (1998).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Barrera-García, A. et al. Trace elements and oxidative stress indicators in the liver and kidney of the blue shark (Prionace glauca). Comp. Biochem. Physiol. A 165, 483–490 (2013).

    Article  CAS  Google Scholar 

  • 65.

    Dhanakumar, S., Solaraj, G. & Mohanraj, R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotox. Environ. Safe 113, 145–151 (2015).

    CAS  Article  Google Scholar 

  • 66.

    Buchanan, K. et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83, 301–309 (2012).

    Article  Google Scholar 

  • 67.

    Bergés-Tiznado, M. E. et al. Mercury and selenium in muscle and target organs of Scalloped Hammerhead Sharks Sphyrna lewini of the SE Gulf of California: Dietary intake, molar ratios, loads, and human health risks. Arch. Environ. Contam. Toxicol. 69, 440–452 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy