in

MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology

  • 1.

    Sohn, H. B. et al. Barcode system for genetic identification of soybean [Glycine max (L.) Merrill] cultivars using InDel markers specific to dense variation blocks. Front. Plant Sci. 8, 520 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Korir, N. K. et al. Plant variety and cultivar identification: advances and prospects. Crit. Rev. Biotechnol. 33, 111–125 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Jamali, S. et al. Identification and distinction of soybean commercial cultivars using morphological and microsatellite markers., Iranian. J. Crop Sci. 13, 131–145 (2011).

    Google Scholar 

  • 4.

    Wu, K. et al. Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers. BMC Genet. 15, 35 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Lee, S. H. et al. How deep learning extracts and learns leaf features for plant classification. Pattern Recognit. 71, 1–13 (2017).

    Article 

    Google Scholar 

  • 6.

    Zhao, C., Chan, S. S. F., Cham, W.-K. & Chu, L. M. Plant identification using leaf shapes: a pattern counting approach. Pattern Recognit. 48, 3203–3215 (2015).

    Article 

    Google Scholar 

  • 7.

    Price, C. A. et al. Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles. Plant Physiol. 155, 236–245 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    De Vylder, J., Vandenbussche, F. & Hu, Y. et al. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects[J]. Plant physiology 160, 1149–1159 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Zhou, J. et al. Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat. Plant Methods 13, 117 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Biot, E. et al. Multi-scale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis. Development 143, 3417–3428 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Minervini, M. et al. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. Plant J. 90, 204–216 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Neto, J. C. et al. Plant species identification using Elliptic Fourier leaf shape analysis. Computers Electron. Agriculture 50, 121–134 (2006).

    Article 

    Google Scholar 

  • 13.

    Cope, J. S. et al. in International Symposium on Visual Computing (eds Bebis, G. et al.) 669–677 (Springer, 2010).

  • 14.

    Chaki, J. & Parekh, R. Plant leaf recognition using shape based features and neural network classifiers, Int. J. Adv. Comp. Sci. Appl. 2, 41–47 (2011).

  • 15.

    Naresh, Y. & Nagendraswamy, H. Classification of medicinal plants: an approach using modified LBP with symbolic representation. Neurocomputing 173, 1789–1797 (2016).

    Article 

    Google Scholar 

  • 16.

    Pradeep Kumar, T., Veera Prasad Reddy, M. & Bora, P. K. Leaf identification using shape and texture features. Proceedings of International Conference on Computer Vision and Image Processing (eds Raman B., Kumar S., Roy P. P., Sen D.) 531–541 (Springer Singapore, 2017).

  • 17.

    Tharwat, A., Gaber, T., Awad, Y. M., Dey, N. & Hassanien, A. E. Plants identification using feature fusion technique and bagging classifier. (eds Gaber T., Hassanien A. E., El-Bendary N., Dey N.). The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt. 461–471 (Springer International Publishing, 2016).

  • 18.

    Codizar, A. L. & Solano, G. Plant leaf recognition by venation and shape using artificial neural networks. In: 2016 7th International Conference on Information,Intelligence, Systems & Applications (IISA). 1–4 (IEEE, 2016).

  • 19.

    Yang, C. Plant leaf recognition by integrating shape and texture features. Pattern Recognit. 112, 107809 (2021).

    Article 

    Google Scholar 

  • 20.

    Liu, C. et al. A novel identification method for apple (Malus domestica Borkh.) cultivars based on a deep convolutional neural network with leaf image input. Symmetry 12, 217 (2020).

    Article 

    Google Scholar 

  • 21.

    Baldi, A. et al. A leaf-based back propagation neural network for oleander (Nerium oleander L.) cultivar identification. Computers Electron. Agriculture 142, 515–520 (2017).

    Article 

    Google Scholar 

  • 22.

    X. Yu, et al. Patchy image structure classification using multi-orientation region transform. in Proceedings of the AAAI Conference on Artificial Intelligence. 12741–12748 (AAAI, 2020).

  • 23.

    Edelsbrunner, H & Harer, J. in Persistent Homology—a Survey (eds Goodman, J. E., Pach, J., Pollack, R.). 257–282 (Contemporary Mathematics American Mathematical Society, 2008).

  • 24.

    Li, M. et al. Topological data analysis as a morphometric method: using persistent homology to demarcate a leaf morphospace. Front. Plant Sci. 9, 553 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Reininghaus, J. et al. A stable multi-scale kernel for topological machine learning, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4741–4748 (IEEE, Boston, MA, USA, 2015).

  • 26.

    Li, C., Ovsjanikov, M. & Chazal, F. Persistence-based structural recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1995–2002 (IEEE Computer Society, 2014).

  • 27.

    Dey, T., Mandal, S. & Varcho, W. Improved image classification using topological persistence. in Proceedings of the Conference on Vision, Modeling and Visualization. 161–168 (Eurographics Association, 2017).

  • 28.

    MacLane, S. Homology. Bull. Am. Math. Soc. 70, 329–331 (1964).

    Article 

    Google Scholar 

  • 29.

    Qaiser, T. et al. Tumor segmentation in whole slide images using persistent homology and deep convolutional features. in Annual Conference on Medical Image Understanding and Analysis. 320–329 (Springer, 2017).

  • 30.

    Qaiser, T. et al. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features. Med. Image Anal. 55, 1–14 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Zeppelzauer, M. et al. A study on topological descriptors for the analysis of 3d surface texture. Computer Vis. Image Underst. 167, 74–88 (2018).

    Article 

    Google Scholar 

  • 32.

    Chollet, F. Xception: Deep learning with depthwise separable convolutions. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1251–1258 (IEEE Computer Society, 2017).

  • 33.

    Hofer, C. et al. Deep learning with topological signatures. In: Advances in Neural Information Processing Systems. 1634–1644 (Curran Associates Inc., 2017).

  • 34.

    Turner, K., Mukherjee, S. & Boyer, D. M. Persistent homology transform for modeling shapes and surfaces. Inf. Inference.: A J. IMA 3, 310–344 (2014).

    Article 

    Google Scholar 

  • 35.

    Deng, J. et al. Imagenet: a large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255 (IEEE, 2009).

  • 36.

    Adams, H. et al. Persistence images: A stable vector representation of persistent homology. J. Mach. Learn. Res. 18, 218–252 (2017).

    Google Scholar 

  • 37.

    Bubenik, P. Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015).

    Google Scholar 

  • 38.

    Wang, B. et al. From species to cultivar: Soybean cultivar recognition using joint leaf image patterns by multi-scale sliding chord matching. Biosyst. Eng. 194, 99–111 (2020).

    Article 

    Google Scholar 

  • 39.

    Heiberger, R. M., & Neuwirth E. One-way ANOVA. In: R through Excel. 165–191 (Springer, 2009).

  • 40.

    Ling, H. & Jacobs, D. W. Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 286–299 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Wang, B. & Gao, Y. Hierarchical string cuts: a translation, rotation, scale, and mirror invariant descriptor for fast shape retrieval. IEEE Trans. Image Process 23, 4101–4111 (2014).

  • 42.

    Kaya, A. et al. Analysis of transfer learning for deep neural network-based plant classification models. Computers Electron. Agriculture 158, 20–29 (2019).

    Article 

    Google Scholar 

  • 43.

    Yanping, Z. & Liu, W. WeizhenLiuBioinform/mfcis: source code of mfcis. (Version 1.0.2). Zenodo https://doi.org/10.5281/zenodo.4739746 (2021).

  • 44.

    Barré, P. et al. LeafNet: a computer vision system for automatic plant species identification. Ecol. Inform. 40, 50–56 (2017).

    Article 

    Google Scholar 

  • 45.

    Beghin, T. et al. Shape and texture-based plant leaf classification. in International Conference on Advanced Concepts for Intelligent Vision Systems, 345–353 (Springer, 2010).

  • 46.

    Blonder, B. et al. X-ray imaging of leaf venation networks. N. Phytologist 196, 1274–1282 (2012).

    Article 

    Google Scholar 

  • 47.

    Gan, Y. et al. Automatic hierarchy classification in venation networks using directional morphological filtering for hierarchical structure traits extraction. Computational Biol. Chem. 80, 187–194 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Cui, F. & Yang, G. Score level fusion of fingerprint and finger vein recognition. J. Computational Inf. Syst. 7, 5723–5731 (2011).

    Google Scholar 

  • 49.

    Park, H.-A. & Park, K. R. Iris recognition based on score level fusion by using SVM. Pattern Recognit. Lett. 28, 2019–2028 (2007).

    Article 

    Google Scholar 

  • 50.

    Ghosh, S. et al. Software for systems biology: from tools to integrated platforms. Nat. Rev. Genet. 12, 821–832 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Smulders, M., Booy, I. & Vosman, B. Use of molecular and biochemical methods for identification of plant varieties throughout the agri-chain. (eds Trienekens, J. H. & Zuurbier, P. J. P.) In Proceedings of the 2nd International Conference on Chain Management in Agri-and Food Business. 591–600 (Department of Management studies Wageningen Agricultural University, May 1996).

  • 52.

    Park, H. et al. Molecular identification of sweet potato accessions using ARMS-PCR based on SNPs. J. Plant Biotechnol. 47, 124–130 (2020).

    Article 

    Google Scholar 

  • 53.

    Fufa, H. et al. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145, 133–146 (2005).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Kim, M. et al. Genome-wide SNP discovery and core marker sets for DNA barcoding and variety identification in commercial tomato cultivars. Sci. Horticulturae 276, 109734 (2021).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Patzak, J., Henychová, A., Paprštein, F. & Sedlák, J. Evaluation of S-incompatibility locus, genetic diversity and structure of sweet cherry (Prunus avium L.) genetic resources by molecular methods and phenotypic characteristics. J. Horticultural Sci. Biotechnol. 95, 84–92 (2020).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Pourkhaloee, A. et al. Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites. Horticulture Environ. Biotechnol. 59, 875–888 (2018).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Cho, K. H. et al. Sequence-characterized amplified region markers and multiplex-polymerase chain reaction assays for kiwifruit cultivar identification. Horticulture Environ., Biotechnol. 61, 395–406 (2020).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Agarwal, M., Shrivastava, N. & Padh, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27, 617–631 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Nadeem, M. A. et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnological Equip. 32, 261–285 (2018).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Yamaç, S. S. & Todorovic, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 228, 105875 (2020).

    Article 

    Google Scholar 

  • 61.

    Reisi Gahrouei, O., McNairn, H., Hosseini, M. & Homayouni, S. Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches. Can. J. Remote Sens. 46, 84–99 (2020).

    Article 

    Google Scholar 

  • 62.

    Colmer, J. et al. SeedGerm: a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination. N. Phytologist 228, 778–793 (2020).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Danner, M., Berger, K., Wocher, M., Mauser, W. & Hank, T. Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops. ISPRS J. Photogramm. Remote Sens. 173, 278–296 (2021).

    Article 

    Google Scholar 

  • 64.

    Zeiler, M. D. & Fergus R. in Visualizing and Understanding Convolutional Networks (eds Fleet D., Pajdla T., Schiele B., Tuytelaars T.). Computer Vision–ECCV 2014. 818–833 (Springer International Publishing, 2014).

  • 65.

    Erhan, D., Bengio, Y., Courville, A. & Vincent, P. Visualizing higher-layer features of a deep network. Univ. Montr. 1341, 1 (2009).

    Google Scholar 

  • 66.

    Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: Visualising image classification models and saliency maps[C]//InWorkshop at International Conference on Learning Representations. (2014).

  • 67.

    Islam, M. R. Feature and score fusion based multiple classifier selection for iris recognition. Computational Intell. Neurosci. 2014, e380585 (2014).

    Article 

    Google Scholar 

  • 68.

    Yang, J. et al. Feature fusion: parallel strategy vs. serial strategy. Pattern Recognit. 36, 1369–1381 (2003).

    Article 

    Google Scholar 

  • 69.

    Bryson, A. E. et al. Composite modeling of leaf shape across shoots discriminates Vitis species better than individual leaves. Preprint at bioRxiv https://doi.org/10.1101/2020.06.22.163899 (2020).


  • Source: Ecology - nature.com

    Integrating plant-to-plant communication and rhizosphere microbial dynamics: ecological and evolutionary implications and a call for experimental rigor

    Influences of conservation measures on runoff and sediment yield in different intra-event-based flood regimes in the Chabagou watershed