PlasticsEurope. Plastics the—Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2019).
Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913. https://doi.org/10.1371/journal.pone.0111913 (2014).
Google Scholar
Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518. https://doi.org/10.1126/science.aba3656 (2020).
Google Scholar
Bergmann, M., Tekman, M. B. & Gutow, L. Sea change for plastic pollution. Nature 544, 297. https://doi.org/10.1038/544297a (2017).
Google Scholar
Imhof, H. K. et al. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar. Pollut. Bull. 116, 340–347. https://doi.org/10.1016/j.marpolbul.2017.01.010 (2017).
Google Scholar
Obbard, R. W. Microplastics in polar regions: The role of long range transport. Curr. Opin. Environ. Sci. Health 1, 24–29. https://doi.org/10.1016/j.coesh.2017.10.004 (2018).
Google Scholar
Wessel, C. C., Lockridge, G. R., Battiste, D. & Cebrian, J. Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries. Mar. Pollut. Bull. 109, 178–183. https://doi.org/10.1016/j.marpolbul.2016.06.002 (2016).
Google Scholar
Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. Royal Soc. Open Sci. https://doi.org/10.1098/rsos.140317 (2014).
Google Scholar
Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. Royal Soc. Lond. Ser. B, Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205 (2009).
Google Scholar
Arthur, C., Baker, J. E. & Bamford, H. A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9–11, 2008 (University of Washington Tacoma, 2009).
Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic Debris. Environ. Sci. Technol. 53, 1039–1047. https://doi.org/10.1021/acs.est.8b05297 (2019).
Google Scholar
Lusher, A. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 245–307 (Springer International Publishing, 2015).
Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025 (2011).
Google Scholar
Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).
Google Scholar
de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L. & Futter, M. N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?. Sci. Total Environ. 645, 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207 (2018).
Google Scholar
Bråte, I. L. N. et al. Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study. Environ. Pollut. 243, 383–393. https://doi.org/10.1016/j.envpol.2018.08.077 (2018).
Google Scholar
Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947 (2015).
Google Scholar
Cózar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation. Sci. Adv. 3, e1600582. https://doi.org/10.1126/sciadv.1600582 (2017).
Google Scholar
Kanhai, L. D. K. et al. Microplastics in sub-surface waters of the Arctic Central Basin. Mar. Pollut. Bull. 130, 8–18. https://doi.org/10.1016/j.marpolbul.2018.03.011 (2018).
Google Scholar
Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090. https://doi.org/10.1021/acs.est.9b06981 (2020).
Google Scholar
Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2, 315–320. https://doi.org/10.1002/2014EF000240 (2014).
Google Scholar
Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505. https://doi.org/10.1038/s41467-018-03825-5 (2018).
Google Scholar
Kanhai, L. D. K., Gardfeldt, K., Krumpen, T., Thompson, R. C. & O’Connor, I. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci. Rep. 10, 5004. https://doi.org/10.1038/s41598-020-61948-6 (2020).
Google Scholar
Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. J. Sci. Adv. 5, eaax1157. https://doi.org/10.1126/sciadv.aax1157 (2019).
Google Scholar
Amélineau, F. et al. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 219, 1131–1139. https://doi.org/10.1016/j.envpol.2016.09.017 (2016).
Google Scholar
Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278. https://doi.org/10.1007/s00300-018-2283-8 (2018).
Google Scholar
Fang, C. et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere 209, 298–306. https://doi.org/10.1016/j.chemosphere.2018.06.101 (2018).
Google Scholar
Bråte, I. L. N. et al. Microplastics in Marine Bivalves from the Nordic Environment Vol. 504 (Nordic Council of Ministers, 2020).
Google Scholar
Misund, O. A. et al. Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability and warming waters affect landings. Polar Sci. 10, 312–322. https://doi.org/10.1016/j.polar.2016.02.001 (2016).
Google Scholar
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386. https://doi.org/10.2307/3545850 (1994).
Google Scholar
Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).
Google Scholar
Fredericq, S. et al. The critical importance of rhodoliths in the life cycle completion of both macro- and microalgae, and as holobionts for the establishment and maintenance of marine biodiversity. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00502 (2019).
Google Scholar
Krayesky-Self, S. et al. Eukaryotic life inhabits rhodolith-forming coralline algae (Hapalidiales, Rhodophyta), remarkable marine benthic microhabitats. Sci. Rep. 7, 45850. https://doi.org/10.1038/srep45850 (2017).
Google Scholar
Kamenos, N. A., Moore, P. G., Hall-Spencer, J. & Donnan, D. Maerl: Its value as a habitat for commercial species. Shellfish News 18, 8–9 (2004).
Kamenos, N. A., Moore, P. G. & Hall-Spencer, J. M. Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar. Ecol. Prog. Ser. 274, 183–189. https://doi.org/10.3354/meps274183 (2004).
Google Scholar
Gagnon, P., Matheson, K. & Stapleton, M. Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot. Mar. 55, 85–99 (2012).
Google Scholar
Teichert, S. et al. Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31’N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51, 371–390 (2012).
Google Scholar
Teichert, S. et al. Arctic rhodolith beds and their environmental controls. Facies 60, 15–37. https://doi.org/10.1007/s10347-013-0372-2 (2014).
Google Scholar
Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 6972. https://doi.org/10.1038/srep06972 (2014).
Google Scholar
Denisenko, S. G., Denisenko, N. V., Lehtonen, K. K., Andersin, A. B. & Laine, A. O. Macrozoobenthos of the Pechora Sea (SE Barents Sea): Community structure and spatial distribution in relation to environmental conditions. Mar. Ecol. Prog. Ser. 258, 109–123 (2003).
Google Scholar
Rees, H. L. & Dare, P. J. Sources of Mortality and Associated Life-Cycle Traits of Selected Benthic Species: A Review Vol. 33, 36 (CEFAS Directorate of Fisheries Research, 1993).
Sejr, M. K. et al. Growth and production of Hiatella arctica (Bivalvia) in a high-Arctic fjord (Young Sound, Northeast Greenland). Mar. Ecol. Prog. Ser. 244, 163–169. https://doi.org/10.3354/meps244163 (2002).
Google Scholar
Witman, J. D. & Sebens, K. P. Regional variation in fish predation intensity: A historical perspective in the Gulf of Maine. Oecologia 90, 305–315. https://doi.org/10.1007/bf00317686 (1992).
Google Scholar
Kamenos, N. A., Moore, P. G. & Hall-Spencer, J. M. Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play?. ICES J. Mar. Sci. 61, 422–429 (2004).
Google Scholar
Teichert, S., Voigt, N. & Wisshak, M. Do skeletal Mg/Ca ratios of Arctic rhodoliths reflect atmospheric CO2 concentrations?. Polar Biol. 43, 2059–2069. https://doi.org/10.1007/s00300-020-02767-3 (2020).
Google Scholar
Ragazzola, F. et al. Phenotypic plasticity of coralline algae in a High CO2 world. Ecol. Evol. 3, 3436–3446. https://doi.org/10.1002/ece3.723 (2013).
Google Scholar
Teichert, S. & Freiwald, A. Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation. Biogeosciences 11, 833–842. https://doi.org/10.5194/bg-11-833-2014 (2014).
Google Scholar
Büdenbender, J., Riebesell, U. & Form, A. Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar. Ecol. Prog. Ser. 441, 79–87 (2011).
Google Scholar
Wisshak, M. et al. Habitat Characteristics and Carbonate Cycling of Macrophyte-Supported Polar Carbonate Factories (Svalbard)—Cruise No. MSM55—June 11–June 29, 2016—Reykjavik (Iceland)—Longyearbyen (Norway) 58 (Bremen, 2017).
Löder, M. G. J. et al. Enzymatic purification of microplastics in environmental samples. Environ. Sci. Technol. 51, 14283–14292. https://doi.org/10.1021/acs.est.7b03055 (2017).
Google Scholar
Hufnagl, B. et al. A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers. Anal. Methods 11, 2277–2285. https://doi.org/10.1039/C9AY00252A (2019).
Google Scholar
Yanfang, L., Hua, Z. & Cheng, T. A review of possible pathways of marine microplastics transport in the ocean. Anthr. Coasts 3, 6–13. https://doi.org/10.1139/anc-2018-0030 (2020).
Google Scholar
Erni-Cassola, G., Zadjelovic, V., Gibson, M. I. & Christie-Oleza, J. A. Distribution of plastic polymer types in the marine environment; A meta-analysis. J. Hazard. Mater. 369, 691–698. https://doi.org/10.1016/j.jhazmat.2019.02.067 (2019).
Google Scholar
Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843. https://doi.org/10.1038/s41598-019-44117-2 (2019).
Google Scholar
Kooi, M. et al. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 6, 33882. https://doi.org/10.1038/srep33882 (2016).
Google Scholar
Vinay Kumar, B. N., Löschel, L. A., Imhof, H. K., Löder, M. G. J. & Laforsch, C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.116147 (2020).
Google Scholar
Löder, M. G. J. & Gerdts, G. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 201–227 (Springer International Publishing, 2015).
Wisshak, M. et al. Epibenthos dynamics and environmental fluctuations in two contrasting Polar carbonate factories (Mosselbukta and Bjørnøy-Banken, Svalbard). Front. Mar. Sci. 6, 667. https://doi.org/10.3389/fmars.2019.00667 (2019).
Google Scholar
Frias, J. P. G. L., Lyashevska, O., Joyce, H., Pagter, E. & Nash, R. Floating microplastics in a coastal embayment: A multifaceted issue. Mar. Pollut. Bull. 158, 111361. https://doi.org/10.1016/j.marpolbul.2020.111361 (2020).
Google Scholar
Rochman, C. M. et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340. https://doi.org/10.1038/srep14340 (2015).
Google Scholar
Digka, N., Tsangaris, C., Torre, M., Anastasopoulou, A. & Zeri, C. Microplastics in mussels and fish from the Northern Ionian Sea. Mar. Pollut. Bull. 135, 30–40. https://doi.org/10.1016/j.marpolbul.2018.06.063 (2018).
Google Scholar
Santana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T. & Turra, A. Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Mar. Pollut. Bull. 106, 183–189. https://doi.org/10.1016/j.marpolbul.2016.02.074 (2016).
Google Scholar
Gomiero, A., Strafella, P., Øysæd, K. B. & Fabi, G. First occurrence and composition assessment of microplastics in native mussels collected from coastal and offshore areas of the northern and central Adriatic Sea. Environ. Sci. Pollut. Res. Int. 26, 24407–24416. https://doi.org/10.1007/s11356-019-05693-y (2019).
Google Scholar
Mathalon, A. & Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81, 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018 (2014).
Google Scholar
Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17. https://doi.org/10.1016/j.envpol.2015.01.008 (2015).
Google Scholar
Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533. https://doi.org/10.1016/j.envpol.2018.10.032 (2019).
Google Scholar
Woodall, L. C. et al. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull. 95, 40–46. https://doi.org/10.1016/j.marpolbul.2015.04.044 (2015).
Google Scholar
Kowalski, N., Reichardt, A. M. & Waniek, J. J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 109, 310–319. https://doi.org/10.1016/j.marpolbul.2016.05.064 (2016).
Google Scholar
Kooi, M., Nes, E. H. V., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971. https://doi.org/10.1021/acs.est.6b04702 (2017).
Google Scholar
Barrows, A. P. W., Cathey, S. E. & Petersen, C. W. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environ. Pollut. 237, 275–284. https://doi.org/10.1016/j.envpol.2018.02.062 (2018).
Google Scholar
Halsband, C. & Herzke, D. Plastic litter in the European Arctic: What do we know?. Emerg. Contam. 5, 308–318. https://doi.org/10.1016/j.emcon.2019.11.001 (2019).
Google Scholar
Bergmann, M., Lutz, B., Tekman, M. B. & Gutow, L. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life. Mar. Pollut. Bull. 125, 535–540. https://doi.org/10.1016/j.marpolbul.2017.09.055 (2017).
Google Scholar
von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335. https://doi.org/10.1021/es302332w (2012).
Google Scholar
Kolandhasamy, P. et al. Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Sci. Total Environ. 610–611, 635–640. https://doi.org/10.1016/j.scitotenv.2017.08.053 (2018).
Google Scholar
Löder, M. G. J., Kuczera, M., Mintenig, S., Lorenz, C. & Gerdts, G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. J. Environ. Chem. 12, 563–581. https://doi.org/10.1071/EN14205 (2015).
Google Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn, 498 (Springer, 2002).
Google Scholar
Vegan: Community Ecology Package (2020).
Source: Ecology - nature.com