in

Microscale tracking of coral-vibrio interactions

  • 1.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Rosenberg, E., Kellogg, C. A. & Rohwer, F. L. Coral microbiology. Oceanography 20, 146 (2007).

    Article 

    Google Scholar 

  • 3.

    Rohwer, F. & Youle, M. Coral Reefs in the Microbial Seas (Plaid Press, 2010).

  • 4.

    Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Roth, E., Jeon, K. & Stacey, G. Homology in endosymbiotic systems: the term ‘symbiosome’. (1988).

  • 6.

    Zvuloni, A. et al. Spatio-temporal transmission patterns of black-band disease in a coral community. PLoS ONE 4, e4993 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Peters, E. C. in Coral Reefs in the Anthropocene 147–178 (Springer Press, 2015).

  • 8.

    Kushmaro, A., Rosenberg, E., Fine, M., Ben Haim, Y. & Loya, Y. Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar. Ecol. Prog. Ser. 171, 131–137 (1998).

    Article 

    Google Scholar 

  • 9.

    Ben-Haim, Y. et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. Syst. Evol. Microbiol. 53, 309–315 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E. & Yossi, L. The role of microorganisms in coral bleaching. ISME J. 3, 139–146 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Kramarsky-Winter, E., Downs, C., Downs, A. & Loya, Y. Cellular responses in the coral Stylophora pistillata exposed to eutrophication from fish mariculture. Evol. Ecol. Res. 11, 381–401 (2009).

    Google Scholar 

  • 12.

    Santos, E. et al. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J. 5, 1471–1483 (2011).

    Article 

    Google Scholar 

  • 13.

    Ben Haim, Y. & Rosenberg, E. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar. Biol. 141, 47–55 (2002).

  • 14.

    Vidal-Dupiol, J. et al. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiol. 9, 14 (2009).

  • 15.

    Zvuloni, A., Artzy-Randrup, Y., Katriel, G., Loya, Y. & Stone, L. Modeling the impact of white-plague coral disease in climate change scenarios. PLoS Comput. Biol. 11, e1004151 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Wright, R. M. et al. Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci. Rep. 7, 2609-017-02685-1 (2017).

    Google Scholar 

  • 17.

    Garren, M., Son, K., Tout, J., Seymour, J. R. & Stocker, R. Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J. 10, 1363–1372 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Sussman, M. et al. Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS ONE 4, e4511 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Rosenberg, E. & Kushmaro, A. in Coral Reefs: An Ecosystem in Transition 451–464 (Springer, 2011).

  • 20.

    Bourne, D. et al. Microbial disease and the coral holobiont. Trends Microbiol. 17, 554–562 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Weis, V., Davy, S., Hoegh-Guldberg, O., Rodriguez-Lanetty, M. & Pringle, J. Cell biology in model systems as the key to understanding corals. Trends Ecol. Evol. 23, 369–376 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Work, T. & Meteyer, C. To understand coral disease, look at coral cells. EcoHealth 11, 610–618 (2014).

  • 24.

    Shapiro, O. H., Kramarsky-Winter, E., Gavish, A. R., Stocker, R. & Vardi, A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat. Commun. 7, 10860 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Sammarco, P. W. Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar. Ecol. Prog. Ser. Oldendorf 10, 57–65 (1982).

    Article 

    Google Scholar 

  • 27.

    Work, T. M. & Aeby, G. S. Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific. J. Invertebr. Pathol. 107, 127–131 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Work, T. M. & Aeby, G. S. Systematically describing gross lesions in corals. Dis. Aquat. Org. 70, 155–160 (2006).

    Article 

    Google Scholar 

  • 29.

    Ainsworth, T., Fine, M., Roff, G. & Hoegh-Guldberg, O. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. ISME J. 2, 67–73 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Ainsworth, T. D., Fine, M., Blackall, L. L. & Hoegh-Guldberg, O. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl. Environ. Microbiol. 72, 3016–3020 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Boyett, H. V., Bourne, D. G. & Willis, B. L. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Mar. Biol. 151, 1711–1720 (2007).

    Article 

    Google Scholar 

  • 32.

    Gignoux-Wolfsohn, S., Marks, C. J. & Vollmer, S. V. White band disease transmission in the threatened coral, Acropora cervicornis. Sci. Rep. 2, 804 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Kaczmarsky, L. T. Coral disease dynamics in the central Philippines. Dis. Aquat. Org. 69, 9–21 (2006).

    Article 

    Google Scholar 

  • 34.

    Horridge, G. A. The co-ordination of the protective retraction of coral polyps. Philos. Trans. R. Soc. Lond. B Biol. Sci. 240, 495–528 (1957).

    Article 

    Google Scholar 

  • 35.

    Katz, S. M., Pollock, F. J., Bourne, D. G. & Willis, B. L. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs 33, 705–716 (2014).

    Article 

    Google Scholar 

  • 36.

    Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl Acad. Sci. USA 111, 13391–13396 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Gladfelter, E. Circulation of fluids in the gastrovascular system of the reef coral Acropora cervicornis. Biol. Bull. 165, 619–625 (1983).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Patterson, M. R. A chemical engineering view of cnidarian symbioses. Am. Zool. 32, 566–582 (1992).

    Article 

    Google Scholar 

  • 39.

    Lewis, J. & Price, W. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176, 527–544 (1975).

    Article 

    Google Scholar 

  • 40.

    Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Zetsche, E., Baussant, T., Meysman, F. J. & van Oevelen, D. Direct visualization of mucus production by the cold-water coral Lophelia pertusa with digital holographic microscopy. PLoS ONE 11, e0146766 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Lam, E., Kato, N. & Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Chuang, P. S. & Mitarai, S. Signaling pathways in the coral polyp bailout response. Coral Reefs 39, 532–534 (2020).

    Article 

    Google Scholar 

  • 44.

    Kvitt, H. et al. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis. Proc. Natl Acad. Sci. USA 112, 2082–2086 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Garren, M. et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 8, 999–1007 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Garren, M. & Azam, F. Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment. ISME J. 6, 1159–1165 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Banin, E., Israely, T., Fine, M., Loya, Y. & Rosenberg, E. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol. Lett. 199, 33–37 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Meron, D. et al. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 75, 5704–5707 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Certner, R. H., Dwyer, A. M., Patterson, M. R. & Vollmer, S. V. Zooplankton as a potential vector for white band disease transmission in the endangered coral, Acropora cervicornis. PeerJ 5, e3502 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Ushijima, B. et al. Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl. Environ. Microbiol. 80, 2102–2109 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Butler, S. M. & Camilli, A. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat. Rev. Microbiol. 3, 611 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Stocker, R. The 100 µm length scale in the microbial ocean. Aquat. Microb. Ecol. 76, 189–194 (2015).

    Article 

    Google Scholar 

  • 53.

    Csaszar, N. B. M., Seneca, F. O. & van Oppen, M. J. H. Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar. Ecol. Prog. Ser. 392, 93–102 (2009).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Agostini, S. et al. Biological and chemical characteristics of the coral gastric cavity. Coral Reefs 31, 147–156 (2012).

    Article 

    Google Scholar 

  • 55.

    Houlbrèque, F., Rodolfo‐Metalpa, R. & Ferrier‐Pagès, C. Heterotrophic nutrition of tropical, temperate and deep‐sea corals. Dis. Coral 150–163 (2015).

  • 56.

    Sorokin, Y. I. Trophical role of bacteria in the ecosystem of the coral reef. Nature 242, 415–417 (1973).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East