Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).
Google Scholar
Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
Google Scholar
Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).
Google Scholar
Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).
Google Scholar
Stenseth, N. C. & Mysterud, A. Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. Proc. Natl Acad. Sci. USA 99, 13379–13381 (2002).
Google Scholar
Blackford, C., Germain, R. M. & Gilbert, B. Species differences in phenology shape coexistence. Am. Nat. 195, E168–E180 (2020).
Google Scholar
Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl Acad. Sci. USA 105, 16195–16200 (2008).
Google Scholar
Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).
Google Scholar
Mynott, J. Birds in the Ancient World: Winged Words (Oxford Univ. Press, 2018).
Hurlbert, A. H. & Liang, Z. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS ONE 7, e31662 (2012).
Google Scholar
Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1902 (2017).
Google Scholar
Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10, 63–68 (2020).
Google Scholar
Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
Google Scholar
Sullivan, B. L. et al. The eBird enterprise: an integrated approach to development and application of citizen science. Biol. Conserv. 169, 31–40 (2014).
Google Scholar
Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid v.6 (NASA EOSDIS Land Processes DAAC, accessed 26 March 2020); https://doi.org/10.5067/MODIS/MCD12Q2.006
Richardson, A. D., Hufkens, K., Milliman, T. & Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 8, 5679 (2018).
Google Scholar
Cole, E. F., Long, P. R., Zelazowski, P., Szulkin, M. & Sheldon, B. C. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment. Ecol. Evol. 5, 5057–5074 (2015).
Google Scholar
Pettorelli, N. et al. The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim. Res. 46, 15–27 (2011).
Google Scholar
Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).
Åkesson, S. et al. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos. Trans. R. Soc. B 372, 20160252 (2017).
Google Scholar
Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B 372, 20160246 (2017).
Google Scholar
Haest, B., Hüppop, O. & Bairlein, F. The influence of weather on avian spring migration phenology: what, where and when? Glob. Change Biol. 24, 5769–5788 (2018).
Google Scholar
Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B 278, 3437–3443 (2011).
Google Scholar
Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).
Google Scholar
Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).
Van der Graaf, A., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea Wagening. 94, 567 (2006).
Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).
Google Scholar
Marra, P. P., Francis, C. M., Mulvihill, R. S. & Moore, F. R. The influence of climate on the timing and rate of spring bird migration. Oecologia 142, 307–315 (2005).
Google Scholar
Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).
Google Scholar
Horton, K. G. et al. Holding steady: little change in intensity or timing of bird migration over the Gulf of Mexico. Glob. Change Biol. 25, 1106–1118 (2019).
Google Scholar
Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
Google Scholar
Curley, S. R., Manne, L. L. & Veit, R. R. Differential winter and breeding range shifts: implications for avian migration distances. Divers. Distrib. 26, 415–425 (2020).
Google Scholar
Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).
Google Scholar
La Sorte, F. A., Fink, D., Hochachka, W. M., DeLong, J. P. & Kelling, S. Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology 94, 1839–1847 (2013).
Google Scholar
Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236 (2019).
Google Scholar
Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).
Google Scholar
Allstadt, A. J. et al. Spring plant phenology and false springs in the conterminous US during the 21st century. Environ. Res. Lett. 10, 104008 (2015).
Google Scholar
Franks, S. E. et al. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Glob. Change Biol. 24, 957–971 (2018).
Google Scholar
Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
Google Scholar
Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).
Google Scholar
Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).
Google Scholar
Abdala‐Roberts, L. et al. Tri‐trophic interactions: bridging species, communities and ecosystems. Ecol. Lett. 22, 2151–2167 (2019).
Google Scholar
Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).
Google Scholar
Helm, B., Van Doren, B. M., Hoffmann, D. & Hoffmann, U. Evolutionary response to climate change in migratory pied flycatchers. Curr. Biol. 29, 3714–3719 (2019).
Google Scholar
Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).
Google Scholar
Townsend, A. K. et al. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird. Glob. Change Biol. 22, 544–555 (2016).
Google Scholar
Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89, 2736–2745 (2008).
Google Scholar
Lany, N. K. et al. Breeding timed to maximumimize reproductive success for a migratory songbird: the importance of phenological asynchrony. Oikos 125, 656–666 (2016).
Google Scholar
Samplonius, J. M. & Both, C. Climate change may affect fatal competition between two bird species. Curr. Biol. 29, 327–331 (2019).
Google Scholar
Potvin, D. A., Välimäki, K. & Lehikoinen, A. Differences in shifts of wintering and breeding ranges lead to changing migration distances in European birds. J. Avian Biol. 47, 619–628 (2016).
Google Scholar
Bassett, F. & Cubie, D. Wintering hummingbirds in Alabama and Florida: species diversity, sex and age ratios, and site fidelity. J. Field Ornithol. 80, 154–162 (2009).
Google Scholar
Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).
Google Scholar
Chmura, H. E. et al. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89, e01337 (2019).
Google Scholar
Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).
Google Scholar
Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V. & Wikle, C. K. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 19, 553–570 (2009).
Google Scholar
Miller-Rushing, A. J., Inouye, D. W. & Primack, R. B. How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J. Ecol. 96, 1289–1296 (2008).
Google Scholar
Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).
Google Scholar
Barnes, R. dggridR: Discrete global grids for R. R package version 0.1.12 https://github.com/r-barnes/dggri (2017).
Data Zone (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis
Sulla-Menashe, D. et al. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sens. Environ. 115, 392–403 (2011).
Google Scholar
Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid v.6 (NASA EOSDIS Land Processes DAAC, accessed 26 February 2020); https://doi.org/10.5067/MODIS/MCD12Q2.006
Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 157, 157–177 (2002).
Google Scholar
Fink, D. et al. Spatiotemporal exploratory models for broad-scale survey data. Ecol. Appl. 20, 2131–2147 (2010).
Google Scholar
Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).
Google Scholar
Lindén, A., Meller, K. & Knape, J. An empirical comparison of models for the phenology of bird migration. J. Avian Biol. 48, 255–265 (2017).
Google Scholar
Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://www.jstatsoft.org/v076/i01 (2017).
Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434 (1998).
Besag, J. & Kooperberg, C. On conditional and intrinsic autoregression. Biometrika 82, 733 (1995).
Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data (Chapman & Hall/CRC, 2004).
Morris, M. et al. Bayesian hierarchical spatial models: implementing the Besag York Mollié model in stan. Spat. Spatiotemporal Epidemiol. 31, 100301 (2019).
Google Scholar
Stan Development Team. RStan: the R interface to Stan. R package version 2.17.3 http://mc-stan.org (2018).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Monnahan, C. C., Thorson, J. T. & Branch, T. A. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. Methods Ecol. Evol. 8, 339–348 (2017).
Google Scholar
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).
Google Scholar
Gelman, A., Carlin, J. B, Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman & Hall/CRC, 2014).
Finley, A. O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence: spatially-varying coefficients models. Methods Ecol. Evol. 2, 143–154 (2011).
Google Scholar
Stan Modeling Language Users Guide and Reference Manual v. 2.18.0 (Stan Development Team, 2018).
Menzel, A., von Vopelius, J., Estrella, N., Schleip, C. & Dose, V. Farmers’ annual activities are not tracking the speed of climate change. Clim. Res. 32, 201–207 (2006).
Source: Ecology - nature.com