in

Modeling biomass allocation strategy of young planted Zelkova serrata trees in Taiwan with component ratio method and seemingly unrelated regressions

  • 1.

    UNFCCC. Adoption of the Paris Agreement. 32 (2015).

  • 2.

    Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 3.

    Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734. https://doi.org/10.1038/s41467-018-05938-3 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 4.

    Matovic, D. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 36, 2011–2016. https://doi.org/10.1016/j.energy.2010.09.031 (2011).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01133-3 (2020).

    Article 

    Google Scholar 

  • 6.

    Clough, B. J. et al. Testing a new component ratio method for predicting total tree aboveground and component biomass for widespread pine and hardwood species of eastern US. Forestry 91, 575–588. https://doi.org/10.1093/forestry/cpy016 (2018).

    Article 

    Google Scholar 

  • 7.

    Lam, T. Y., Li, X., Kim, R. H., Lee, K. H. & Son, Y. M. Bayesian meta-analysis of regional biomass factors for Quercus mongolica forests in South Korea. J. For. Res. 26, 875–885. https://doi.org/10.1007/s11676-015-0089-x (2015).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026 (2014).

    Article 

    Google Scholar 

  • 9.

    Ver Planck, N. R. & MacFarlane, D. W. A vertically integrated whole-tree biomass model. Trees 29, 449–460, https://doi.org/10.1007/s00468-014-1123-x (2015).

  • 10.

    Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49, 12–35. https://doi.org/10.1093/forestscience/49.1.12 (2003).

    Article 

    Google Scholar 

  • 11.

    Parresol, B. R. Additivity of nonlinear biomass equations. Can. J. For. Res. 31, 865–878. https://doi.org/10.1139/x00-202 (2001).

    Article 

    Google Scholar 

  • 12.

    Parresol, B. R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45, 573–593, https://doi.org/10.1093/forestscience/45.4.573 (1999).

  • 13.

    Radtke, P. et al. Improved accuracy of aboveground biomass and carbon estimates for live trees in forests of the eastern United States. Forestry 90, 32–46. https://doi.org/10.1093/forestry/cpw047 (2017).

    Article 

    Google Scholar 

  • 14.

    Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. 30, https://doi.org/10.2737/NRS-GTR-88 (2011).

  • 15.

    Chiou, L.-W., Huang, C.-H., Wu, J.-C. & Hsieh, H.-R. Report of the 4th National Forest Resource Inventory in Taiwan. Taiwan For. J. 41, 3–13 (2015).

    Google Scholar 

  • 16.

    Yang, T.-R., Lam, T. Y. & Kershaw, J. A. Jr. Developing relative stand density index for structurally complex mixed species cypress and pine forests. For. Ecol. Manag. 409, 425–433. https://doi.org/10.1016/j.foreco.2017.11.043 (2018).

    Article 

    Google Scholar 

  • 17.

    Taiwan Forestry Bureau. The Fourth National Forest Resource Inventory. Vol. 78 (2017).

  • 18.

    Ko, S.-H. Study on the Biomass and Carbon Storage in the Zelkova serrata Plantation. MSc. Thesis, National Chung-Hsing University, https://doi.org/10.6845/NCHU.2006.00871 (2006).

  • 19.

    Lin, J.-C., Jeng, M.-R., Liu, S.-F. & Lee, K. J. Economic benefit evaluation of the potential CO2 sequestration by the National Reforestation Program. Taiwan J. For. Sci. 17, 311–321, https://doi.org/10.7075/TJFS.200209.0311 (2002).

  • 20.

    Lin, K.-C., Huang, C.-M. & Duh, C.-T. Study on estimate of carbon storages and sequestration of planted trees in Zelkova serrata plantations, Taiwan. J. Natl. Park 18, 45–58 (2008).

    CAS 

    Google Scholar 

  • 21.

    Liao, S.-H. & Wang, Y.-N. Study on carbon dioxide fixation efficiency of Cinnamomum camphora and Zelkova serrata in understory planting. Q. J. Chin. For. 35, 361–373 (2002).

    Google Scholar 

  • 22.

    Lambert, M. C., Ung, C. H. & Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 35, 1996–2018. https://doi.org/10.1139/x05-112 (2005).

    Article 

    Google Scholar 

  • 23.

    Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57, 348–368. https://doi.org/10.2307/2281644 (1962).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 24.

    Henningsen, A. & Hamann, J. D. systemfit: A package for estimating systems of simultaneous equations in R. J. Stat. Softw. 23, 1–40, https://doi.org/10.18637/jss.v023.i04 (2007).

  • 25.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 26.

    Nelson, A. S., Weiskittel, A. R., Wagner, R. G. & Saunders, M. R. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass Bioenergy 68, 215–227, https://doi.org/10.1016/j.biombioe.2014.06.015 (2014).

  • 27.

    Poudel, K. P., Temesgen, H., Radtke, P. J. & Gray, A. N. Estimating individual-tree aboveground biomass of tree species in the western U.S.A. Can. J. For. Res. 49, 701–714, https://doi.org/10.1139/cjfr-2018-0361 (2019).

  • 28.

    Carvalho, J. P. & Parresol, B. R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 179, 269–276, https://doi.org/10.1016/S0378-1127(02)00549-2 (2003).

  • 29.

    He, H. et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE 13, e0186226. https://doi.org/10.1371/journal.pone.0186226 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Cheng, C.-H., Huang, Y.-H., Menyailo, O. V. & Chen, C.-T. Stand development and aboveground biomass carbon accumulation with cropland afforestation in Taiwan. Taiwan J. For. Sci. 31, 105–118 (2016).

    Google Scholar 

  • 31.

    Lee, J.-H., Ko, Y. & McPherson, E. G. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban For. Urban Green. 16, 208–220. https://doi.org/10.1016/j.ufug.2016.02.010 (2016).

    Article 

    Google Scholar 

  • 32.

    Park, J. H., Baek, S. G., Kwon, M. Y., Je, S. M. & Woo, S. Y. Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. For. Sci. Technol. 14, 97–104. https://doi.org/10.1080/21580103.2018.1452799 (2018).

    Article 

    Google Scholar 

  • 33.

    Yoon, T. K. et al. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green. 12, 344–349. https://doi.org/10.1016/j.ufug.2013.03.006 (2013).

    Article 

    Google Scholar 

  • 34.

    Chiu, C. M., Lo-Cho, C.-N. & Suen, M.-Y. Pruning method and knot wound analysis of Taiwan zelkova (Zelkova serrata Hay.) plantations. Taiwan J. For. Sci. 17, 503–513, https://doi.org/10.7075/TJFS.200212.0503 (2002).

  • 35.

    Lo-Cho, C.-N., Chung, H.-H. & Chiu, C.-M. Effects of pruning on the growth and the branch occlusion tendency of Taiwan Zelkova (Zelkova serrata Hay.) young plantations. Bull. Taiwan For. Res. Inst. 10, 315–323, https://doi.org/10.7075/BTFRI.199509.0315 (1995).

  • 36.

    Shepherd, K. R. Plantation Silviculture (Springer, 1986).

    Google Scholar 

  • 37.

    Chiou, C.-R., Lin, J.-C. & Liu, W.-Y. The carbon benefit of thinned wood for bioenergy in Taiwan. Forests 10, 255. https://doi.org/10.3390/f10030255 (2019).

    Article 

    Google Scholar 

  • 38.

    Liu, W.-Y., Lin, C.-C. & Su, K.-H. Modelling the spatial forest-thinning planning problem considering carbon sequestration and emissions. For. Policy Econ. 78, 51–66. https://doi.org/10.1016/j.forpol.2017.01.002 (2017).

    Article 

    Google Scholar 

  • 39.

    Rais, A., Poschenrieder, W., van de Kuilen, J.-W.G. & Pretzsch, H. Impact of spacing and pruning on quantity, quality and economics of Douglas-fir sawn timber: Scenario and sensitivity analysis. Eur. J. For. Res. 139, 747–758. https://doi.org/10.1007/s10342-020-01282-8 (2020).

    Article 

    Google Scholar 

  • 40.

    Kershaw, J. A., Ducey, M. J., Beers, T. W. & Husch, B. Forest Mensuration. (John Wiley & Sons Ltd, 2016).


  • Source: Ecology - nature.com

    Ancient atmospheric oxygen sleuthing with ocean chromium

    Assessment of water resource security in karst area of Guizhou Province, China