UNFCCC. Adoption of the Paris Agreement. 32 (2015).
Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).
Google Scholar
Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734. https://doi.org/10.1038/s41467-018-05938-3 (2018).
Google Scholar
Matovic, D. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 36, 2011–2016. https://doi.org/10.1016/j.energy.2010.09.031 (2011).
Google Scholar
Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01133-3 (2020).
Google Scholar
Clough, B. J. et al. Testing a new component ratio method for predicting total tree aboveground and component biomass for widespread pine and hardwood species of eastern US. Forestry 91, 575–588. https://doi.org/10.1093/forestry/cpy016 (2018).
Google Scholar
Lam, T. Y., Li, X., Kim, R. H., Lee, K. H. & Son, Y. M. Bayesian meta-analysis of regional biomass factors for Quercus mongolica forests in South Korea. J. For. Res. 26, 875–885. https://doi.org/10.1007/s11676-015-0089-x (2015).
Google Scholar
Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026 (2014).
Google Scholar
Ver Planck, N. R. & MacFarlane, D. W. A vertically integrated whole-tree biomass model. Trees 29, 449–460, https://doi.org/10.1007/s00468-014-1123-x (2015).
Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49, 12–35. https://doi.org/10.1093/forestscience/49.1.12 (2003).
Google Scholar
Parresol, B. R. Additivity of nonlinear biomass equations. Can. J. For. Res. 31, 865–878. https://doi.org/10.1139/x00-202 (2001).
Google Scholar
Parresol, B. R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45, 573–593, https://doi.org/10.1093/forestscience/45.4.573 (1999).
Radtke, P. et al. Improved accuracy of aboveground biomass and carbon estimates for live trees in forests of the eastern United States. Forestry 90, 32–46. https://doi.org/10.1093/forestry/cpw047 (2017).
Google Scholar
Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. 30, https://doi.org/10.2737/NRS-GTR-88 (2011).
Chiou, L.-W., Huang, C.-H., Wu, J.-C. & Hsieh, H.-R. Report of the 4th National Forest Resource Inventory in Taiwan. Taiwan For. J. 41, 3–13 (2015).
Yang, T.-R., Lam, T. Y. & Kershaw, J. A. Jr. Developing relative stand density index for structurally complex mixed species cypress and pine forests. For. Ecol. Manag. 409, 425–433. https://doi.org/10.1016/j.foreco.2017.11.043 (2018).
Google Scholar
Taiwan Forestry Bureau. The Fourth National Forest Resource Inventory. Vol. 78 (2017).
Ko, S.-H. Study on the Biomass and Carbon Storage in the Zelkova serrata Plantation. MSc. Thesis, National Chung-Hsing University, https://doi.org/10.6845/NCHU.2006.00871 (2006).
Lin, J.-C., Jeng, M.-R., Liu, S.-F. & Lee, K. J. Economic benefit evaluation of the potential CO2 sequestration by the National Reforestation Program. Taiwan J. For. Sci. 17, 311–321, https://doi.org/10.7075/TJFS.200209.0311 (2002).
Lin, K.-C., Huang, C.-M. & Duh, C.-T. Study on estimate of carbon storages and sequestration of planted trees in Zelkova serrata plantations, Taiwan. J. Natl. Park 18, 45–58 (2008).
Google Scholar
Liao, S.-H. & Wang, Y.-N. Study on carbon dioxide fixation efficiency of Cinnamomum camphora and Zelkova serrata in understory planting. Q. J. Chin. For. 35, 361–373 (2002).
Lambert, M. C., Ung, C. H. & Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 35, 1996–2018. https://doi.org/10.1139/x05-112 (2005).
Google Scholar
Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57, 348–368. https://doi.org/10.2307/2281644 (1962).
Google Scholar
Henningsen, A. & Hamann, J. D. systemfit: A package for estimating systems of simultaneous equations in R. J. Stat. Softw. 23, 1–40, https://doi.org/10.18637/jss.v023.i04 (2007).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).
Nelson, A. S., Weiskittel, A. R., Wagner, R. G. & Saunders, M. R. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass Bioenergy 68, 215–227, https://doi.org/10.1016/j.biombioe.2014.06.015 (2014).
Poudel, K. P., Temesgen, H., Radtke, P. J. & Gray, A. N. Estimating individual-tree aboveground biomass of tree species in the western U.S.A. Can. J. For. Res. 49, 701–714, https://doi.org/10.1139/cjfr-2018-0361 (2019).
Carvalho, J. P. & Parresol, B. R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 179, 269–276, https://doi.org/10.1016/S0378-1127(02)00549-2 (2003).
He, H. et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE 13, e0186226. https://doi.org/10.1371/journal.pone.0186226 (2018).
Google Scholar
Cheng, C.-H., Huang, Y.-H., Menyailo, O. V. & Chen, C.-T. Stand development and aboveground biomass carbon accumulation with cropland afforestation in Taiwan. Taiwan J. For. Sci. 31, 105–118 (2016).
Lee, J.-H., Ko, Y. & McPherson, E. G. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban For. Urban Green. 16, 208–220. https://doi.org/10.1016/j.ufug.2016.02.010 (2016).
Google Scholar
Park, J. H., Baek, S. G., Kwon, M. Y., Je, S. M. & Woo, S. Y. Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. For. Sci. Technol. 14, 97–104. https://doi.org/10.1080/21580103.2018.1452799 (2018).
Google Scholar
Yoon, T. K. et al. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green. 12, 344–349. https://doi.org/10.1016/j.ufug.2013.03.006 (2013).
Google Scholar
Chiu, C. M., Lo-Cho, C.-N. & Suen, M.-Y. Pruning method and knot wound analysis of Taiwan zelkova (Zelkova serrata Hay.) plantations. Taiwan J. For. Sci. 17, 503–513, https://doi.org/10.7075/TJFS.200212.0503 (2002).
Lo-Cho, C.-N., Chung, H.-H. & Chiu, C.-M. Effects of pruning on the growth and the branch occlusion tendency of Taiwan Zelkova (Zelkova serrata Hay.) young plantations. Bull. Taiwan For. Res. Inst. 10, 315–323, https://doi.org/10.7075/BTFRI.199509.0315 (1995).
Shepherd, K. R. Plantation Silviculture (Springer, 1986).
Chiou, C.-R., Lin, J.-C. & Liu, W.-Y. The carbon benefit of thinned wood for bioenergy in Taiwan. Forests 10, 255. https://doi.org/10.3390/f10030255 (2019).
Google Scholar
Liu, W.-Y., Lin, C.-C. & Su, K.-H. Modelling the spatial forest-thinning planning problem considering carbon sequestration and emissions. For. Policy Econ. 78, 51–66. https://doi.org/10.1016/j.forpol.2017.01.002 (2017).
Google Scholar
Rais, A., Poschenrieder, W., van de Kuilen, J.-W.G. & Pretzsch, H. Impact of spacing and pruning on quantity, quality and economics of Douglas-fir sawn timber: Scenario and sensitivity analysis. Eur. J. For. Res. 139, 747–758. https://doi.org/10.1007/s10342-020-01282-8 (2020).
Google Scholar
Kershaw, J. A., Ducey, M. J., Beers, T. W. & Husch, B. Forest Mensuration. (John Wiley & Sons Ltd, 2016).
Source: Ecology - nature.com