in

Modeling Eastern Russian High Arctic Geese (Anser fabalis, A. albifrons) during moult and brood rearing in the ‘New Digital Arctic’

  • 1.

    Huettmann, F. (ed.) Protection of the Three Poles 337 (Springer, 2012).

    Google Scholar 

  • 2.

    Krupnik, I. & Crowell, A. L. Arctic Crashes: People and Animals in the Changing North (Smithsonian Institutional Press, 2020).

    Google Scholar 

  • 3.

    Portenkorupnik, L. A. Birds of Chukchi Peninsula and Wrangel Island, Part 1 424 (Nauka, 1972) (in Russian).

    Google Scholar 

  • 4.

    Vorobiev, K. A. Birds of Yakutia 336 (Nauka, 1963) (in Russian).

    Google Scholar 

  • 5.

    Egorov, O. V. State of population of the waterbirds and other bird species in the Lena Delta and Yana-Indigirka Tundra by the materials of air-record. In Nature of Yakutia and Its Protection 124–127 (Yakutsk .Kn. Izd., 1965) (in Russian).

    Google Scholar 

  • 6.

    Egorov, O. V. & Perfil’ev, V. I. Inventory of the population of the waterbirds from airplane in the North Yakutia. In Methods of Inventory of Population 71–78 (Yakutsk. Kn. Izd., 1970) (in Russian).

    Google Scholar 

  • 7.

    Kishchinskii, A. A. & Flint, V. E. Waterbirds of the Near-Indigirka Tundra. In Resources of the Waterbirds of the USSR, Their Reproduction and Use 62–65 (Mosk. Gos. Univ., 1972) (in Russian).

    Google Scholar 

  • 8.

    Krechmar, A. V., Andreev, A. V. & Kondratyev, A. Y. Bird of Northern Plains 228 (Nauka, 1991) (in Russian).

    Google Scholar 

  • 9.

    Andreev, A. V. Monitoring of the Geese in the North Asia. In Species Diversity and State of Populations of the Waterbirds in the North-East of Asia 5–36 (SVNTs DVO RAN, 1997) (in Russian).

    Google Scholar 

  • 10.

    Krechmar, A. V. & Kondratyev, A. V. Waterfowl in North-East Asia 458 (NESC FEB RAN, 2006).

    Google Scholar 

  • 11.

    Kistchinski, A. A. Waterfowl in north-east Asia. Wildfowl 24, 88–102 (1973).

    Google Scholar 

  • 12.

    Pearce, J. M., Eesler, D. & Degtyarev, A. G. Birds of the Indigirka River Delta, Russia: Historical and biogeographic comparisons. Arctic 51(4), 361–370 (1998).

  • 13.

    Hodges, J. I. & Eldridge, W. D. Aerial surveys of eiders and other waterbirds on the eastern Arctic coast of Russia. Wildfowl 52, 127–142 (2001).

    Google Scholar 

  • 14.

    Hupp, J. W. et al. Moult migration of emperor geese Chen Canagica between Alaska and Russia. Avian Biol. https://doi.org/10.1111/j.0908-8857.2007.03969.x (2007).

    Article 

    Google Scholar 

  • 15.

    Degtyarev, A. G. Monitoring of the Bewick’s Swan in the tundra zone in Yakutia. Contemp. Probl. Ecol. 3, 90–99. https://doi.org/10.1134/S1995425510010157` (2010).

    Article 

    Google Scholar 

  • 16.

    Stroud, D. A., Fox, A. D., Urquhart, C. & Francis, I. S. International Single Species Action Plan for the Conservation of the Greenland White-fronted Goose (Anser albifrons flavirostris) AEWA Technical Series No. 45 (AEWA, 2012).

    Google Scholar 

  • 17.

    Fox, A. D. & Leafloor, J. O. A Global Audit of the Status and Trends of Arctic and Northern Hemisphere Goose Populations. (Conservation of Arctic Flora and Fauna International Secretariat). ISBN 978-9935-431-66-0. (2018).

  • 18.

    Humphries, G., Magness, D. R. & Huettmann, F. Machine Learning for Ecology and Sustainable Natural Resource Management (Springer, 2018).

    Book 

    Google Scholar 

  • 19.

    Carlson, D. A. Lesson in sharing. Nature 469, 293. https://doi.org/10.1038/469293a (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Huettmann, F., Artukhin, Y., Gilg, O. & Humphires, G. Predictions of 27 Arctic pelagic seabird distributions using public environmental variables, assessed with colony data: A first digital IPY and GBIF open access synthesis platform. Mar. Biodivers. 41, 141–179. https://doi.org/10.1007/s12526-011-0083-2 (2011).

    Article 

    Google Scholar 

  • 21.

    Huettmann, F. & Ickert-Bond, S. On Open Access, data mining and plant conservation in the Circumpolar North with an online data example of the Herbarium. (University of Alaska Museum of the North Arctic Science, 2017). http://www.nrcresearchpress.com/toc/as/0/ja (2017).

  • 22.

    Ickert-Bond, S. et al. New Insights on Beringian Plant Distribution Patterns. Alaska Park Science—Volume 12 Issue 1: Science, History, and Alaska’s Changing Landscapes. (U.S. National Park Service, 2018). https://www.nps.gov/articles/aps-v12-i1-c-10.htm.

  • 23.

    Huettmann F (2015) On the Relevance and Moral Impediment of Digital Data Management Data Sharing and Public Open Access and Open Source Code in (Tropical) Research: The Rio Convention Revisited Towards Mega Science and Best Professional Research Practices. In: Huettmann F (eds) Central American Biodiversity: Conservation Ecology and a Sustainable Future. Springer, New York, pp. 391–418

  • 24.

    Zoeckler, C. Chapter 9: Status, Threat, and protection of Arctic Waterbirds. In Protection of the Three Poles (ed. Huettrmann, F.) 203–216 (Springer, 2012).

    Chapter 

    Google Scholar 

  • 25.

    Jiao, S., Huettmann, F., Guo, Y., Li, X. & Ouyang, Y. Advanced long-term bird banding and climate data mining in spring confirm passerine population declines for the Northeast Chinese-Russian flyway. Glob. Planet. Change 144C, 17–33. https://doi.org/10.1016/j.gloplacha.2016.06.015(2016).

  • 26.

    Zoeckler, C. et al. The winter distribution of the Spoon-billed Sandpiper Calidris pygmaeus. Bird Conserv. Int. 26, 476–489 (2016).

    Article 

    Google Scholar 

  • 27.

    Huettmann, F., Mi, C. & Guo, Yu. ‘Batteries’ in machine learning: A first experimental assessment of inference for Siberian Crane Breeding Grounds in the Russian High Arctic Based on ‘Shaving’ 74 predictors. In Machine Learning for Ecology and Sustainable Natural Resource Management (eds Humphries, G. et al.) 163–184 (Springer, 2018).

    Chapter 

    Google Scholar 

  • 28.

    Rogacheva, E. V. The Birds of Central Siberia (Husum Druck-Verlag, 1992).

    Google Scholar 

  • 29.

    Chen, J. et al. Prospects for the sustainability of social-ecological systems (SES) on the Mongolian plateau: five critical issues. Environ. Res. Lett. 13, 123004. https://doi.org/10.1088/1748-9326/aaf27b (2018).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Sethi, S., Goyal, S. P. & Choudhary, A. N. Chapter 12: Poaching, illegal wildlife trade, and bushmeat hunting in India and South Asia. In International Wildlife Management: Conservation Challenges in a changing World (John Hopkins University Press, 2019).

    Google Scholar 

  • 31.

    Huettmann, F. Chapter 6: Effective Poyang Lake Conservation? A local ecology view from downstream involving internationally migratory birds when trying to buffer and manage water from HKH with ‘Modern’ concepts. In Hindu Kush-Himalaya Watersheds Downhill: Landscape Ecology and Conservation Perspectives (eds Regmi, G.R. & Huettmann, F.) 99–112 (Springer, 2020).

  • 32.

    Yong, D. L. et al. The State of Migratory Landbirds in the East Asian Flyway: Distributions, Threats, and Conservation Needs. Front. Ecol. Evol. 9, 613172. https://doi.org/10.3389/fevo.2021.613172 (2021).

    Article 

    Google Scholar 

  • 33.

    Deng, X. Q. et al. Contrasting trends in two East Asian populations of the Greater White-fronted Goose Anser albifrons. Wildlfowl Special Issue 6, 181–205 (2020).

    Google Scholar 

  • 34.

    Li, C. et al. Population trends and migration routes of the East Asian Bean Goose Anser fabalis middendorffii and A. f. serrirostris. Wildfowl 70(6), 124–156 (2020).

    Google Scholar 

  • 35.

    Shimada, T., Mori, A. & Tajiri, H. Regional variation in long-term population trends for the Greater White-fronted Goose Anser albifrons in Japan. Wildfowl 69, 105–117 (2019).

    Google Scholar 

  • 36.

    Wilson, R. E., Ely, C. R. & Talbot, S. L. Flyway structure in the circumpolar greater white-fronted goose. Ecol. Evol. https://doi.org/10.1002/ece3.4345 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Bocharnikov, V. & Huettmann, F. Wilderness Condition as a Status Indicator of Russian Flora and Fauna: Implications for Future Protection Initiatives. Int. J. Wilderness 25, 26–39 (2019).

    Google Scholar 

  • 38.

    Klein, D. R. & Magomedova, M. Industrial development and wildlife in arctic ecosystems: Can learning from the past lead to a brighter future? In Social and Environmental Impacts in the North (eds Rasmussen, R. O. & Koroleva, N. E.) 5–56 (Kluwer Academic Publishers, 2003).

  • 39.

    Klein, D. R. et al. Management and conservation of wildlife in a changing Arctic environment. Arctic Climate Impact Assessment (ACIA) ACIA Overview Report 597–648 (Cambridge University Press, 2005).

    Google Scholar 

  • 40.

    Banerjee, S. Arctic Voices: Resistance at the Tipping Point (Seven Stories Press, 2012).

    Google Scholar 

  • 41.

    Zuckerberg, B., Huettmann, F. & Friar, J. Proper data management as a for reliable species distribution modeling. In Predictive Species and Habitat Modeling in Landscape Ecology (Drew, C. A. et al.) 45–70 (Springer, 2011).

  • 42.

    Elith, J., Graham, C. & NCEAS Working Group. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • 43.

    Elith, J. et al. Presence-only and presence-absence data for comparing species distribution modeling methods. J. Biodivers. Inform. 15, 69–80 (2020).

    Article 

    Google Scholar 

  • 44.

    Tian, H. et al. Combining modern tracking data and historical records improves understanding of the summer habitats of the Eastern Lesser White-fronted Goose Anser erythropus. Ecol. Evol. https://doi.org/10.1002/ece3.7310 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Ohse, B., Huettmann, F., Ickert-Bond, S. & Juday, G. Modeling the distribution of white spruce (Picea glauca) for Alaska with high accuracy: An open access role-model for predicting tree species in last remaining wilderness areas Polar Biol. 32, 1717–1724 (2009).

  • 46.

    Spiridonov, V. et al. Chapter 8 Toward the new role of marine and coastal protected areas in the Arctic: The Russian case. In Protection of the Three Poles (ed. Huettrmann, F.) 171–201 (Springer, 2012).

    Chapter 

    Google Scholar 

  • 47.

    Nixon, W., Sinclair, P. H., Eckert, C. D. & Hughes, N. Birds of the Yukon Territory (UBC Press, 2003).

    Google Scholar 

  • 48.

    Booms, T., Huettmann, F. & Schempf, P. Gyrfalcon nest distribution in Alaska based on a predictive GIS model. Polar Biol. 33, 1601–1612 (2009).

    Google Scholar 

  • 49.

    Aycrigg, J. et al. Novel approaches to modeling and mapping terrestrial vertebrate occurrence in the Northwest and Alaska: An evaluation. Northwest Sci. 89, 355–381. https://doi.org/10.3955/046.089.0405 (2015).

    Article 

    Google Scholar 

  • 50.

    Carboneras, C. & Kirwan, G. M. Greater White-fronted Goose (Anser albifrons). In Handbook of the Birds of the World Alive (eds del Hoyo, J. et al.) (Lynx Edicions, 2013).

    Google Scholar 

  • 51.

    Carboneras, C. & Kirwan, G. M. Bean Goose (Anser fabalis). In Handbook of the Birds of the World Alive (eds del Hoyo, J. et al.) (Lynx Edicions, 2014).

    Google Scholar 

  • 52.

    Hilborn, R. & Mangel, M. The Ecological Detective: Confronting Models with Data (Princeton University Press, 1997).

    Book 

    Google Scholar 

  • 53.

    Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 16, 199–231 (2002).

    MATH 

    Google Scholar 

  • 54.

    Betts, M. G. et al. Comments on “Methods to account for spatial autocorrelation in the analysis of species distributional data: A review”. Ecography 32, 374–378 (2009).

  • 55.

    Fox, C. H. F. et al. Predictions from machine learning ensembles: Marine bird distribution and density on Canada’s Pacific coast. Mar. Ecol. Prog. Ser. 566, 199–216 (2017).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Fox, A. D. et al. Twenty-five years of population monitoring: The rise and fall of the Greenland White-fronted Goose Anser albifrons flavirostris. In Waterbirds Around the World (eds Boere, G. et al.) 637–639 (The Stationary Office, 2006).

    Google Scholar 

  • 57.

    Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.12729 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    BirdLife International. Anser albifrons. The IUCN Red List of Threatened Species 2016: e.T22679881A85980652. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22679881A85980652.en. (Accessed 28th March 2021) (2016).

  • 59.

    BirdLife International. Anser fabalis. The IUCN Red List of Threatened Species 2018: e.T22679875A132302864. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22679875A132302864.en. (Accessed 28 March 2021) (2018).

  • 60.

    Wang, X. L. et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nat. Commun. 10, 2187 (2019).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Ruokonen, M., Litvin, K. & Aarvak, T. Taxonomy of the bean goose–pink-footed goose. Mol. Phylogenet. Evol. 48, 554–562 (2008).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Kölzsch, A. et al. Flyway connectivity and exchange primarily driven by moult migration in geese. Mov. Biol. 7, 3 (2019).

    Google Scholar 

  • 63.

    Yen, P., Huettmann, F. & Cooke, F. Modelling abundance and distribution of Marbled Murrelets (Brachyramphus marmoratus) using GIS, marine data and advanced multivariate statistics. Ecol. Model. 171, 395–413 (2004).

    Article 

    Google Scholar 

  • 64.

    Herrick, K. A., Huettmann, F. & Lindgren, M. A. A global model of avian influenza prediction in wild birds: The importance of northern regions. Vet. Res. 44(1), 42. https://doi.org/10.1186/1297-9716-44-42 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Gulyaeva, M. et al. Data mining and model-predicting a global disease reservoir for low-pathogenic Avian Influenza (AI) in the wider pacific rim using big data sets. Sci. Rep. 10, 1681. https://doi.org/10.1038/s41598-020-73664-2 (2020).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Robold, R. & Huettmann, F. High-Resolution Prediction of American Red Squirrel in Interior Alaska: A role model for conservation using open access data, machine learning, GIS and LIDAR. PEERJ. https://peerj.com/articles/11830/ (2021).


  • Source: Ecology - nature.com

    Radio-frequency wave scattering improves fusion simulations

    Horizontal gene transfer and adaptive evolution in bacteria