Ethics statement
All procedures were conducted in accordance with the current laws in Thailand on experimental animals and were approved by the safety management committee for experiments of the Laboratory Animal Center, Chiang Mai University (Project Number 2561/FA-0001). The study also followed the recommendations in the ARRIVE guidelines.
Species-specific primer design
All the DNA tissue analysed originated from the mucus of the individual giant snakehead. Total DNA was extracted from the mucus sample using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). Extracted DNA was used as a template for qPCR assay together with synthetic fragments. DNA samples were quantified using a Qubit fluorometer (Life Technologies) calibrated with the Quant-iT dsDNA HS Assay following the manufacturer’s instructions. For each replicate, 3 µL volumes were measured.
Species-specific primers and a minor-groove binding (MGB) probe incorporating a 5′ FAM reporter dye and a 3′ non-fluorescent quencher were designed to amplify an 127 bp targeting within the 16S region for the giant snakehead (C. micropeltes), using Primer Express (V3.0, Life Technologies; Table 3). Probe and primer sequences were matched against the National Centre for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/) nucleotide database with BLASTn (Basic Local Alignment Search Tool) to confirm the species’ specificity for the giant snakehead in silico assays.
To ensure that the assay only amplified the giant snakehead, it was deployed on a closely related species commonly found in Thai freshwater environments using conventional PCR amplification and visualization on a 1.5% agarose gel stained with SYBR Safe DNA Gel Stain (Life Technologies).
qPCR assay
The qPCR assay was deployed using Environmental Master Mix (Applied Biosystems) on mucus samples from the giant snakehead and related species to ensure the species specificity to the qPCR assay. In addition, eDNA qPCR assay for the giant snakehead, a water sample collected from tank at Phayao Freshwater Aquarium (Phayao Inland Fisheries Research and Development Center) was known to have only the giant snakehead was included as a positive control for the presence of amplifiable eDNA in water samples. The tank contains around 4.5 m3 of water with one individual of giant snakehead resides in the tank (the fish is about 60–70 cm in length).
All eDNA qPCR amplifications were performed in three replicates in a final volume of 20 µL, using 10.0 µL of 2 × TaqMan Environmental Master Mix 2.0 (Thermo Fisher Scientific), 2.0 µL of DNA template, 900 nM each of the F/R primers, and 125 nM of the probe. Samples were run under the following conditions: an initial 10 min incubation at 95 °C followed by 50 cycles of denaturation at 95 °C for 15 s and annealing/extension at 60 °C for 1 min. Negative controls with all PCR reagents but no template (three replicates) were run in parallel to assess potential contamination. The quantification cycle (Cq) was converted to quantities per unit volume using the linear regression obtained from the synthesized target gene standard curve (Integrated DNA Technologies Pte. Ltd., Singapore). The giant snakehead eDNA concentrations were then reported as copies/mL. The limit of detection (LOD) and the limit of quantification (LOQ) were also measured using the standard dilution series of synthesized target gene fragment with known copy numbers. A dilution series containing 1.5 × 101 to 1.5 × 104 copies per PCR tube were prepared and used as quantification standards. The calculation of LOD and LOQ was done using published R script by Klymus et al.26.
DNA extraction from the filters
DNA trapped on the filters obtained from the aquarium experiments and field collections were extracted using Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) using a protocol modified from the manufacturer’s protocol with the following changes: the DNA from all samples were eluted twice with 25 µL AE buffer, in a total volume of 50 µL to obtain a more concentrated eDNA solution. The volume of ATL buffer (360 µL), Proteinase K (40 µL), AL buffer (400 µL) and Ethanol (400 µL) were doubled.
Aquarium experiment
An aquarium experiment was used to test the extent to which qPCR of water samples can detect eDNA of giant snakehead at low simulated densities. The juvenile giant snakehead was obtained from the fish store and transported to a laboratory at Chiang Mai University. The giant snakeheads were then held in separate 120 L plastic holding containers in which the water was continuously filtered. The fish were fed frozen shrimp/commercially available flake fish food three times a week, and were held at 23 ± 1 °C.
The sensitivity of eDNA detection in the aquaria was evaluated by conducting three aquarium experiments using plastic tanks (30 × 45 × 25 cm) filled with 120 L of aged-tap water. The water in the tanks was continuously aerated through a filter. In each experiment, the giant snakeheads were randomly assigned to the tanks (10 individuals per tank). The average size of the snakeheads was 9.7 cm (body length ranging from 9.1 to 10.6 cm). The average weight was 8.15 g (ranging from 6.7 to 10.6 g). The water in the tanks was maintained at 23 ± 1 °C. A 300 mL water sample from each tank was collected at each time point (0, 3, 6, 12, 24, 48, 72, 96, 120, 144, and 168 after removal of the fishes from the tanks) in triplicate. Collected water was filtered on a GF/F filter (0.7 μm Whatman International Ltd., Maidstone, UK). The eDNA from each sample solution was extracted using a Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) in a final volume of 50 µL, detailed in DNA extraction from the filters. To confirm the absence of the giant snakehead eDNA in the water prior to the experiments, three tanks without giant snakehead were prepared and water sample was collected and treated as described above.
Real-time PCR was performed with the species-specific primers and probe set using a Rotor-Gene Q system (Qiagen, Hilden, Germany). The reaction conditions were the same as described in qPCR assay. Three replicates were conducted for each sample including the negative PCR control and positive control.
eDNA field collection
Water samples were collected at 6 points within Kwan Payao according to the survey locations of the Inland Fisheries Research and Development Center. Additional water samples were collected from 11 and 6 locations in Ing River where water flowed into and out of Kwan Payao, respectively (Fig. 1). To avoid contamination, all field equipment was sterilized using 10% bleach, UV-Crosslinker or autoclaved and sealed prior to transport to the study site, and a separate pair of nitrile disposable gloves were used for each sample. At each site, water samples were collected three replicate in bucket that had been previously decontaminated with a 10% bleach rinse followed by two distilled water rinses.
In total, water samples were collected from 6 sites (in Kwan Phayao) and from 17 sites (in the Ing River) from 15th February to 5th March 2019, the middle of the dry season. Each site was sampled in triplicate, 300 mL samples of water were collected and filtered on GF/F filter (0.7 μm Whatman International Ltd., Maidstone, UK). In total, 306 water samples were collected from the surface water of lakes and rivers. For every sampling day, deionised water (300 mL) was filtrated as a negative control. The water samples and real-time PCR was processed as described above in qPCR assay.
Source: Ecology - nature.com