Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations, Modeling, Estimation, and Decision Making (eds. Wood, J. M. & Tanner, G. W.) (Academic Press, 2002).
Krause, J. & Ruxton, G. D. Living in Groups. Oxford Series in Ecology and Evolution (Oxford University Press, 2002).
Riipi, M. et al. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature 413, 512–514. https://doi.org/10.1038/35097061 (2001).
Google Scholar
Griffin, A. S., Savani, R. S., Hausmanis, K. & Lefebvre, L. Mixed-species aggregations in birds: Zenaida doves, Zenaida aurita, respond to alarm call of carib grackles, Quiscalus lugubris. Anim. Behav. 70, 507–515. https://doi.org/10.1016/j.anbehav.2004.11.023 (2005).
Google Scholar
Kunz, T. H. Roosting ecology of bats. In Ecology of Bats (ed. Kunz, T. H.) 1–55 (Springer, 1982).
Dobson, A. & Poole, J. Conspecific aggregation and conservation biology. In Behavioral Ecology and Conservation Biology (ed. Caro, T. M.) 193–208 (Oxford University Press, 1998).
Laist, D. W. & Reynolds, J. E. Influence of power plants and other warm-water refuges on Florida manatees. Mar. Mamm. Sci. 21, 739–764 (2005).
Google Scholar
Bossart, G. D. et al. Pathological features of the Florida manatee cold stress syndrome. Aquat. Mamm. 29, 9–17 (2002).
Google Scholar
Laist, D. W., Taylor, C. & Reynolds, J. E. III. Winter habitat preferences for Florida manatees and vulnerability to cold. PLoS One 8(3), e58978 (2013).
Google Scholar
Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Sys. 3, 137–155 (2015).
Google Scholar
Hodgson, A., Kelly, N. & Peel, D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: A dugong case study. PLoS One 8, 1–15. https://doi.org/10.1371/journal.pone.0079556 (2013).
Google Scholar
Hodgson, A., Peel, D. & Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol. Appl. 27, 1253–1267 (2017).
Google Scholar
Landeo-Yauri, S. S., Ramos, E. A., Castelblanco-Martínez, D. N., Niño-Torres, C. A. & Searle, L. Using small drones to photo-identify Antillean manatees: A novel method for monitoring an endangered marine mammal in the Caribbean Sea. Endanger. Species Res. 41, 79–90. https://doi.org/10.3354/esr01007 (2020).
Google Scholar
Linchant, J., Lisein, J., Smeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mamm. Rev. 45, 239–252. https://doi.org/10.1111/mam.12046 (2015).
Google Scholar
Martin, J. et al. Estimating distribution of hidden objects with drones: From tennis balls to manatees. PLoS One 7(6), 1–8. https://doi.org/10.1371/journal.pone.0038882 (2012).
Google Scholar
Fiori, L., Martinez, E., Bader, M. K. F., Orams, M. B. & Bollard, B. Insights into the use of an unmanned aerial vehicle (UAV) to investigate the behavior of humpback whales (Megaptera novaeangliae) in Vava’u, Kingdom of Tonga. Mar. Mamm. Sci. 36, 209–223 (2020).
Google Scholar
Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).
Google Scholar
Edwards, H. H., Pollock, K. H., Ackerman, B. B., Reynolds, J. E. III. & Powell, J. A. Estimation of detection probability in manatee aerial surveys at a winter aggregation site. J. Wildl. Manag. 71, 2052–2060 (2007).
Google Scholar
Stith, B. M. et al. Passive thermal refugia provided warm water for Florida manatees during the severe winter of 2009–2010. Mar. Ecol. Prog. Ser. 462, 287–301. https://doi.org/10.3354/meps09732 (2012).
Google Scholar
Edwards, H. H. & Ackerman, B. B. (eds.) Aerial surveys of manatee distribution in Florida, 1984–2004. In Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Fish and Wildlife Research Institute Technical Report, TR-19, 273 (2016).
Hartman, D. S. Ecology and behavior of the manatee (Trichechus manatus) in Florida. Am. Soc. Mamm. Spec. Publ. 5, 1–153 (1979).
Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 1–133 (1978).
Google Scholar
Kéry, M. & Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective (Elsevier, Amsterdam, 2012).
Dorazio, R. M., Martin, J. & Edwards, H. H. Estimating abundance while accounting for rarity, correlated behavior, and other sources of variation in counts. Ecology 94, 1472–1478 (2013).
Google Scholar
Martin, J. et al. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach. Methods Ecol. Evol. 2, 595–601 (2011).
Google Scholar
Hostetler, J. A., Edwards, H. H., Martin, J. & Schueller, P. Updated statewide abundance estimates for the Florida manatee. https://f50006a.eos-intl.net/F50006A/OPAC/Details/Record.aspx?BibCode=1864664. Accessed 12 June 2021 (2018).
Craig, B. A. & Reynolds, J. E. III. Determination of manatee population trends along the Atlantic coast of Florida using a Bayesian approach with temperature adjusted aerial survey data. Mar. Mamm. Sci. 20, 386–400 (2004).
Google Scholar
Hisakado, M., Kitsukawa, K. & Mori, S. Correlated binomial models and correlation structures. J. Phys. A Math. Gen. 39, 15365–15378 (2006).
Google Scholar
Royle, A. J., Dorazio, R. M. & Link, W. A. Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Stat. 16(1), 67–85. https://doi.org/10.1198/106186007X181425 (2007).
Google Scholar
Royle, A. J. & Dorazio, R. M. Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. J. Ornithol. 152, 521–537 (2012).
Google Scholar
Kellner, K. jagsUI: a wrapper around “rjags” to streamline “JAGS” analyses. R package. version 1.4.4. (2016).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020) www.R-project.org/. Accessed 12 June 2021.
Runge, M.C. et al. Status and threats analysis for the Florida manatee (Trichechus manatus latirostris), 2016. U.S. Geological Survey Scientific Investigations Report 2017–5030, Reston, VA, 2017. https://doi.org/10.3133/sir20175030
U.S. Fish and Wildlife Service. Florida Manatee Recovery Plan, Trichechus manatus latirostris, Third Revision. (U.S. Fish and Wildlife Service, 2001).
Flamm, R. O., Reynolds, J. E. III. & Harmak, C. Improving conservation of Florida manatees (Trichechus manatus latirostris): Conceptualization and contributions toward a regional warm-water network management strategy for sustainable winter habitat. Environ. Manag. 51, 154–166 (2013).
Google Scholar
Martin, J. et al. Combining information for monitoring at large spatial scales: First statewide abundance estimate of the Florida manatee. Biol. Conserv. 186, 44–51 (2015).
Google Scholar
Valade, J., Mezich, R., Smith, K., Merrill, M. & Calleson, T. Florida Manatee Warm-Water Habitat Action Plan. Florida Fish & Wildlife Service and Florida Fish and Wildlife Conservation Commission. 1–43 (2020).
Wang, D., Shao, Q. & Yue, H. Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASs): A review. Remote Sens. 11(1308), 1–28 (2019).
Google Scholar
Colefax, A. P., Butcher, P. A. & Kelaher, B. P. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES J. Mar. Sci. 75, 1–8 (2018).
Google Scholar
Linchant, et al. UAS imagery reveals new survey opportunities for counting hippos. PLoS One 13, 1–17. https://doi.org/10.1371/journal.pone.0206413 (2018).
Google Scholar
Ezat, M. A., Fritsch, C. J. & Downs, C. T. Use of an unmanned aerial vehicle (drone) to survey Nile crocodile populations: A case study at Lake Nyamithi, Ndumo game reserve, South Africa. Biol. Conserv. 223, 76–81 (2018).
Google Scholar
Pӧysӓ, H., Kotilainen, J., Väänänen, V. & Kunnasranta, M. Estimating production in ducks: A comparison between ground surveys and unmanned aircraft surveys. Eur. J. Wildl. Res. 64(74), 1–4. https://doi.org/10.1007/s10344-018-1238-2 (2018).
Google Scholar
Ratcliffe, N. et al. A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Syst. 3, 95–101. https://doi.org/10.1139/juvs-2015-0006 (2015).
Google Scholar
Brack, I. V., Kindel, A. & Oliveira, L. F. B. Detection error in wildlife abundance estimates from unmanned aerial systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 9, 1864–1873 (2018).
Google Scholar
Goebel, M. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).
Google Scholar
Source: Ecology - nature.com