in

Monitoring abundance of aggregated animals (Florida manatees) using an unmanned aerial system (UAS)

  • 1.

    Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations, Modeling, Estimation, and Decision Making (eds. Wood, J. M. & Tanner, G. W.) (Academic Press, 2002).

  • 2.

    Krause, J. & Ruxton, G. D. Living in Groups. Oxford Series in Ecology and Evolution (Oxford University Press, 2002).

    Google Scholar 

  • 3.

    Riipi, M. et al. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature 413, 512–514. https://doi.org/10.1038/35097061 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Griffin, A. S., Savani, R. S., Hausmanis, K. & Lefebvre, L. Mixed-species aggregations in birds: Zenaida doves, Zenaida aurita, respond to alarm call of carib grackles, Quiscalus lugubris. Anim. Behav. 70, 507–515. https://doi.org/10.1016/j.anbehav.2004.11.023 (2005).

    Article 

    Google Scholar 

  • 5.

    Kunz, T. H. Roosting ecology of bats. In Ecology of Bats (ed. Kunz, T. H.) 1–55 (Springer, 1982).

  • 6.

    Dobson, A. & Poole, J. Conspecific aggregation and conservation biology. In Behavioral Ecology and Conservation Biology (ed. Caro, T. M.) 193–208 (Oxford University Press, 1998).

  • 7.

    Laist, D. W. & Reynolds, J. E. Influence of power plants and other warm-water refuges on Florida manatees. Mar. Mamm. Sci. 21, 739–764 (2005).

    Article 

    Google Scholar 

  • 8.

    Bossart, G. D. et al. Pathological features of the Florida manatee cold stress syndrome. Aquat. Mamm. 29, 9–17 (2002).

    Article 

    Google Scholar 

  • 9.

    Laist, D. W., Taylor, C. & Reynolds, J. E. III. Winter habitat preferences for Florida manatees and vulnerability to cold. PLoS One 8(3), e58978 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Sys. 3, 137–155 (2015).

    Article 

    Google Scholar 

  • 11.

    Hodgson, A., Kelly, N. & Peel, D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: A dugong case study. PLoS One 8, 1–15. https://doi.org/10.1371/journal.pone.0079556 (2013).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Hodgson, A., Peel, D. & Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol. Appl. 27, 1253–1267 (2017).

    Article 

    Google Scholar 

  • 13.

    Landeo-Yauri, S. S., Ramos, E. A., Castelblanco-Martínez, D. N., Niño-Torres, C. A. & Searle, L. Using small drones to photo-identify Antillean manatees: A novel method for monitoring an endangered marine mammal in the Caribbean Sea. Endanger. Species Res. 41, 79–90. https://doi.org/10.3354/esr01007 (2020).

    Article 

    Google Scholar 

  • 14.

    Linchant, J., Lisein, J., Smeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mamm. Rev. 45, 239–252. https://doi.org/10.1111/mam.12046 (2015).

    Article 

    Google Scholar 

  • 15.

    Martin, J. et al. Estimating distribution of hidden objects with drones: From tennis balls to manatees. PLoS One 7(6), 1–8. https://doi.org/10.1371/journal.pone.0038882 (2012).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Fiori, L., Martinez, E., Bader, M. K. F., Orams, M. B. & Bollard, B. Insights into the use of an unmanned aerial vehicle (UAV) to investigate the behavior of humpback whales (Megaptera novaeangliae) in Vava’u, Kingdom of Tonga. Mar. Mamm. Sci. 36, 209–223 (2020).

    Article 

    Google Scholar 

  • 17.

    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).

    Article 

    Google Scholar 

  • 18.

    Edwards, H. H., Pollock, K. H., Ackerman, B. B., Reynolds, J. E. III. & Powell, J. A. Estimation of detection probability in manatee aerial surveys at a winter aggregation site. J. Wildl. Manag. 71, 2052–2060 (2007).

    Article 

    Google Scholar 

  • 19.

    Stith, B. M. et al. Passive thermal refugia provided warm water for Florida manatees during the severe winter of 2009–2010. Mar. Ecol. Prog. Ser. 462, 287–301. https://doi.org/10.3354/meps09732 (2012).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Edwards, H. H. & Ackerman, B. B. (eds.) Aerial surveys of manatee distribution in Florida, 1984–2004. In Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Fish and Wildlife Research Institute Technical Report, TR-19, 273 (2016).

  • 21.

    Hartman, D. S. Ecology and behavior of the manatee (Trichechus manatus) in Florida. Am. Soc. Mamm. Spec. Publ. 5, 1–153 (1979).

    Google Scholar 

  • 22.

    Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 1–133 (1978).

    MATH 

    Google Scholar 

  • 23.

    Kéry, M. & Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • 24.

    Dorazio, R. M., Martin, J. & Edwards, H. H. Estimating abundance while accounting for rarity, correlated behavior, and other sources of variation in counts. Ecology 94, 1472–1478 (2013).

    Article 

    Google Scholar 

  • 25.

    Martin, J. et al. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach. Methods Ecol. Evol. 2, 595–601 (2011).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Hostetler, J. A., Edwards, H. H., Martin, J. & Schueller, P. Updated statewide abundance estimates for the Florida manatee. https://f50006a.eos-intl.net/F50006A/OPAC/Details/Record.aspx?BibCode=1864664. Accessed 12 June 2021 (2018).

  • 27.

    Craig, B. A. & Reynolds, J. E. III. Determination of manatee population trends along the Atlantic coast of Florida using a Bayesian approach with temperature adjusted aerial survey data. Mar. Mamm. Sci. 20, 386–400 (2004).

    Article 

    Google Scholar 

  • 28.

    Hisakado, M., Kitsukawa, K. & Mori, S. Correlated binomial models and correlation structures. J. Phys. A Math. Gen. 39, 15365–15378 (2006).

    MathSciNet 
    Article 

    Google Scholar 

  • 29.

    Royle, A. J., Dorazio, R. M. & Link, W. A. Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Stat. 16(1), 67–85. https://doi.org/10.1198/106186007X181425 (2007).

    MathSciNet 
    Article 

    Google Scholar 

  • 30.

    Royle, A. J. & Dorazio, R. M. Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. J. Ornithol. 152, 521–537 (2012).

    Article 

    Google Scholar 

  • 31.

    Kellner, K. jagsUI: a wrapper around “rjags” to streamline “JAGS” analyses. R package. version 1.4.4. (2016).

  • 32.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020) www.R-project.org/. Accessed 12 June 2021.

  • 33.

    Runge, M.C. et al. Status and threats analysis for the Florida manatee (Trichechus manatus latirostris), 2016. U.S. Geological Survey Scientific Investigations Report 2017–5030, Reston, VA, 2017. https://doi.org/10.3133/sir20175030

  • 34.

    U.S. Fish and Wildlife Service. Florida Manatee Recovery Plan, Trichechus manatus latirostris, Third Revision. (U.S. Fish and Wildlife Service, 2001).

  • 35.

    Flamm, R. O., Reynolds, J. E. III. & Harmak, C. Improving conservation of Florida manatees (Trichechus manatus latirostris): Conceptualization and contributions toward a regional warm-water network management strategy for sustainable winter habitat. Environ. Manag. 51, 154–166 (2013).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Martin, J. et al. Combining information for monitoring at large spatial scales: First statewide abundance estimate of the Florida manatee. Biol. Conserv. 186, 44–51 (2015).

    Article 

    Google Scholar 

  • 37.

    Valade, J., Mezich, R., Smith, K., Merrill, M. & Calleson, T. Florida Manatee Warm-Water Habitat Action Plan. Florida Fish & Wildlife Service and Florida Fish and Wildlife Conservation Commission. 1–43 (2020).

  • 38.

    Wang, D., Shao, Q. & Yue, H. Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASs): A review. Remote Sens. 11(1308), 1–28 (2019).

    ADS 

    Google Scholar 

  • 39.

    Colefax, A. P., Butcher, P. A. & Kelaher, B. P. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES J. Mar. Sci. 75, 1–8 (2018).

    Article 

    Google Scholar 

  • 40.

    Linchant, et al. UAS imagery reveals new survey opportunities for counting hippos. PLoS One 13, 1–17. https://doi.org/10.1371/journal.pone.0206413 (2018).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Ezat, M. A., Fritsch, C. J. & Downs, C. T. Use of an unmanned aerial vehicle (drone) to survey Nile crocodile populations: A case study at Lake Nyamithi, Ndumo game reserve, South Africa. Biol. Conserv. 223, 76–81 (2018).

    Article 

    Google Scholar 

  • 42.

    Pӧysӓ, H., Kotilainen, J., Väänänen, V. & Kunnasranta, M. Estimating production in ducks: A comparison between ground surveys and unmanned aircraft surveys. Eur. J. Wildl. Res. 64(74), 1–4. https://doi.org/10.1007/s10344-018-1238-2 (2018).

    Article 

    Google Scholar 

  • 43.

    Ratcliffe, N. et al. A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Syst. 3, 95–101. https://doi.org/10.1139/juvs-2015-0006 (2015).

    Article 

    Google Scholar 

  • 44.

    Brack, I. V., Kindel, A. & Oliveira, L. F. B. Detection error in wildlife abundance estimates from unmanned aerial systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 9, 1864–1873 (2018).

    Article 

    Google Scholar 

  • 45.

    Goebel, M. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere