in

Multi-kingdom ecological drivers of microbiota assembly in preterm infants

[adace-ad id="91168"]
  • 1.

    Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first decade of life. Trends Microbiol. 27, 997–1010 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Fischbach, M. A. Microbiome: focus on causation and mechanism. Cell 174, 785–790 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Widder, S. et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 10, 2557–2568 (2016).

    MathSciNet  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Vrancken, G., Gregory, A. C., Huys, G. R. B., Faust, K. & Raes, J. Synthetic ecology of the human gut microbiota. Nat. Rev. Microbiol. 17, 754–763 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).

    Article  Google Scholar 

  • 16.

    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Shade, A. et al. Macroecology to unite all life, large and small. Trends Ecol. Evol. 33, 731–744 (2018).

    PubMed  Article  Google Scholar 

  • 18.

    Gregory, K. E. et al. Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome 4, 68 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 1, 16024 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    DiBartolomeo, M. E. & Claud, E. C. The developing microbiome of the preterm infant. Clin. Ther. 38, 733–739 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    La Rosa, P. S. et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl Acad. Sci. USA 111, 12522–12527 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 22.

    Costello, E. K., Carlisle, E. M., Bik, E. M., Morowitz, M. J. & Relman, D. A. Microbiome assembly across multiple body sites in low-birthweight infants. MBio 4, e00782-13 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Stewart, C. J. et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome 4, 67 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Gasparrini, A. J. et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 4, 2285–2297 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Reynolds, L. A. & Finlay, B. B. Early life factors that affect allergy development. Nat. Rev. Immunol. 17, 518–528 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).

    ADS  Article  CAS  Google Scholar 

  • 32.

    Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Limon, J. J., Skalski, J. H. & Underhill, D. M. Commensal fungi in health and disease. Cell Host Microbe 22, 156–165 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Koskinen, K. et al. First insights into the diverse human archaeome: specific detection of Archaea in the gastrointestinal tract, lung, and nose and on skin. MBio 8, 00824-17 (2017).

    Article  Google Scholar 

  • 35.

    Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8, e40553 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Ishwaran, H. & Rao, J. S. Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33, 730–773 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  • 41.

    Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).

    PubMed  Article  Google Scholar 

  • 42.

    Bucci, V. et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & Navarrete, S. A. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99, 690–699 (2018).

    PubMed  Article  Google Scholar 

  • 44.

    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLOS Comput. Biol. 8, e1002687 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLOS Comput. Biol. 8, e1002606 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLOS Comput. Biol. 9, e1003388 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Pammi, M., Liang, R., Hicks, J., Mistretta, T. A. & Versalovic, J. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol. 13, 257 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Clare Balboni on environmental economics

    Researchers improve efficiency of next-generation solar cell material