in

Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range

  • 1.

    Hayward, M. W. et al. FORUM: Ecologists need robust survey designs, sampling and analytical methods. J. Appl. Ecol. 52, 286–290 (2015).

    Article 

    Google Scholar 

  • 2.

    Karanth, K. U. Estimating tiger Pantheratigris populations from camera-trap data using capture-recapture models. Biol. Conserv. 71, 333–338 (1995).

    Article 

    Google Scholar 

  • 3.

    O’Connell, A. F., Nichols, J. D. & Katranth, K. U. Camera Traps in Animal Ecology: Methods and Analyses (Springer, 2011).

    Book 

    Google Scholar 

  • 4.

    Molinari-Jobin, A. et al. Monitoring in the presence of species misidentification: The case of the Eurasian lynx in the Alps. Anim. Conserv. 15, 266–273 (2012).

    Article 

    Google Scholar 

  • 5.

    López-Bao, J. V. et al. Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Sci. Rep. 8, 2177 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Foster, R. J. & Harmsen, B. J. A critique of density estimation from camera-trap data. J. Wildl. Manage. 76, 224–236 (2012).

    Article 

    Google Scholar 

  • 7.

    Rozylowicz, L., Popescu, V. D., Pǎtroescu, M. & Chişamera, G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 20, 561–579 (2011).

    Article 

    Google Scholar 

  • 8.

    Weingarth, K. et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture-recapture techniques in a German national park. Anim. Biodivers. Conserv. 35, 197–207 (2012).

    Article 

    Google Scholar 

  • 9.

    Pesenti, E. & Zimmermann, F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 94, 73–81 (2013).

    Article 

    Google Scholar 

  • 10.

    Blanc, L., Marboutin, E., Gatti, S. & Gimenez, O. Abundance of rare and elusive species: Empirical investigation of closed versus spatially explicit capture-recapture models with lynx as a case study. J. Wildl. Manage. 77, 372–378 (2013).

    Article 

    Google Scholar 

  • 11.

    Kubala, J. et al. Robust monitoring of the Eurasian lynx Lynxlynx in the Slovak Carpathians reveals lower numbers than officially reported. Oryx 53, 548–556 (2019).

    Article 

    Google Scholar 

  • 12.

    Kaczensky, P. et al. Status, Management and Distribution of Large Carnivores: Bear, Lynx, Wolf & Wolverine—in Europe (European Commission, 2013).

    Google Scholar 

  • 13.

    Gimenez, O. et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 9, 11707–11715 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Okarma, H. et al. Status of Carnivores in the Carpathian Ecoregion. Report of the Carpathian Ecoregion Initiative (2000).

  • 15.

    Stehlík, J. Znovuvysazení rysa ostrovida Lynx lynx L. v některých evropských zemích v letech 1970–1976. Poľovnícky zborníkFolia venatoria 9, 255–265 (1979).

  • 16.

    Červený, J. & Bufka, L. Lynx (Lynx lynx) in south-western Bohemia. Acta. Sci. Nat. Brno 30, 16–33 (1996).

    Google Scholar 

  • 17.

    Salvatori, V. et al. Hunting legislation in the Carpathian Mountains: Implications for the conservation and management of large carnivores. Wildlife Biol. 8, Pagination missing-please provide (2002).

  • 18.

    Smolko, P. et al. Lynx monitoring in the Muránska planina NP, Slovakia and its importance for the national and European management and conservation of the species. Technical report (2018).

  • 19.

    Kubala, J. et al. Monitoring rysa ostrovida (Lynx lynx) vo Veporských vrchoch a jeho význam pre národný a európsky manažment a ochranu druhu. Technická správa. (In Slovak) (2019).

  • 20.

    Kubala, J. et al. Monitoring rysa ostrovida (Lynx lynx) v Strážovských vrchoch a jeho význam pre národný a európsky manažment a ochranu druhu. Technická správa. (In Slovak) (2020).

  • 21.

    Duangchantrasiri, S. et al. Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement. Conserv. Biol. 30, 639–648 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Karanth, K. U., Nichols, J. D., Kumar, N. S. & Hines, J. E. Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology 87, 2925–2937 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Bisht, S., Banerjee, S., Qureshi, Q. & Jhala, Y. Demography of a high-density tiger population and its implications for tiger recovery. J. Appl. Ecol. 56, 1725–1740 (2019).

    Article 

    Google Scholar 

  • 24.

    Zimmermann F. et al. Abundanz und Dichte des Luchses in den Nordwestalpen : Fang-Wiederfang-Schätzung mittels Fotofallen im K-VI im Winter 2015 / 16, Vol. 41 (2016).

  • 25.

    Pironon, S. et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Sagarin, R. D. & Gaines, S. D. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule?. Ecol. Lett. 5, 137–147 (2002).

    Article 

    Google Scholar 

  • 27.

    Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Krojerová-Prokešová, J. et al. Genetic constraints of population expansion of the Carpathian lynx at the western edge of its native distribution range in Central Europe. Heredity (Edinb). 122, (2019).

  • 30.

    Ján, K. & Štefan, D. Mammals of Slovakia distribution, bionomy and protection. (VEDA, 2012).

  • 31.

    Kubala, J. et al. The coat pattern in the Carpathian population of Eurasian lynx has changed: a sign of demographic bottleneck and limited connectivity. Eur. J. Wildl. Res. 66, 2 (2019).

    Article 

    Google Scholar 

  • 32.

    Kutal, M. et al. Occurrence of large carnivores—Lynx lynx, Canis lupus, and Ursus arctos—and of Felis silvestris in the Czech Republic and western Slovakia in 2012–2016 (Carnivora). Lynx, new Ser. 48, 93–107.

  • 33.

    Galvánek, J., Pietorová, E. & Matejová, M. Hodnotenie abiotických zložiek vybranej ekologicko-funkčnej jednotky. in Ochrana prírody Kysuckého regiónu a spolupráca na jeho trvalo udržateľnom rozvoji. (1996).

  • 34.

    Tolasz, R., Miková, T., Valeriánová, A. & Voženílek, V. Atlas podnebí Česka. (2007).

  • 35.

    Bochníček, O. Climate Atlas of Slovakia. (Slovak Hydrometeorological Institute, 2015).

  • 36.

    Czech Statistical Office. Statistical Yearbook of the Czech Republic 2017. Accessed 9 Nov 2020. https://www.czso.cz/csu/czso/statistical-yearbook-of-the-czech-republic (2017).

  • 37.

    Statistical Office of the Slovak Republic. Statistical Yearbook of the Slovak Republic 2017. Accessed 9 Nov 2020. https://slovak.statistics.sk:443/wps/portal?urile=wcm:path:/obsah-en-pub/publikacie/vsetkypublikacie/f3dc4a81-06ac-4fea-93b7-e0ff45a9fff6 (2017).

  • 38.

    Romportl, D., Zyka, V. & Kutal, M. Connectivity Conservation of Large Carnivores’ Habitats in the Carpathians. in 5th European Congress of Conservation Biology (2018). https://doi.org/10.17011/conference/eccb2018/107837.

  • 39.

    Weingarth, K. et al. Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 24, 2935–2952 (2015).

    Article 

    Google Scholar 

  • 40.

    Mohr, C. O. Table of equivalent populations of north american small mammals. Am. Midl. Nat. 37, 223–249 (1947).

    Article 

    Google Scholar 

  • 41.

    Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 2852–2862 (1998).

    Article 

    Google Scholar 

  • 42.

    Okarma, H., Sniezko, S. & Smietana, W. Home ranges of Eurasian lynx Lynxlynx in the Polish Carpathian Mountains. Wildlife Biol. 13, 481–487 (2007).

    Article 

    Google Scholar 

  • 43.

    ESRI. ArcGIS Desktop. (2019).

  • 44.

    Duľa, M., Drengubiak, P., Kutal, M., Trulík, V. & Hrdý, Ľ. Monitoring lynx in Kysuce PLA, Slovakia. (2015).

  • 45.

    Kutal, M., Váňa, M., Bojda, M., Kutalová, L. & Suchomel, J. Camera trapping of the Eurasian lynx in the Czech-Slovakian borderland. (2015).

  • 46.

    Duľa, M. et al. Recentný výskyt a reprodukcia rysa ostrovida (Lynx lynx) v CHKO Kysuce a NP Malá Fatra. in 75–78 (2017).

  • 47.

    Choo, Y. R. et al. Best practices for reporting individual identification using camera trap photographs. Glob. Ecol. Conserv. 24, e01294 (2020).

    Article 

    Google Scholar 

  • 48.

    Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture-recapture. Integr. Zool. 8, 232–243 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Gopalaswamy, A. M. et al. Program SPACECAP: Software for estimating animal density using spatially explicit capture-recapture models. Methods Ecol. Evol. 3, 1067–1072 (2012).

    Article 

    Google Scholar 

  • 50.

    Gopalaswamy, A. et al. SPACECAP: An R package for estimating animal density using spatially explicit capture-recapture models. (2014).

  • 51.

    Team, R. C. R software. (2020).

  • 52.

    Stanley & Burnham_1999. A closure test for capture data.Env&EcolStats.pdf.

  • 53.

    Stanley, T. & Richards, J. CloseTest: A program for testing capture–recapture data for closure [Software Manual]. (2004).

  • 54.

    Copernicus Programme. CORINE Land Cover 2012. http://land.copernicus.e/an-europea/orine-land-cove/lc-2012.Google Scholar (2012).

  • 55.

    Gelman, A., Carlin, J., Stern, H. & DB, R. Bayesian data analysis.2nd edn. (2004).

  • 56.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ, 2006).

    Book 

    Google Scholar 

  • 57.

    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).

    Article 

    Google Scholar 

  • 58.

    Arnason, A. N. Parameter estimates from mark-recapture experiments on two populations subject to migration and death. Res. Popul. Ecol. (Kyoto) 13, 97–113 (1972).

    Article 

    Google Scholar 

  • 59.

    Arnason, A. N. The estimation of population size, migration rates and survival in a stratified population. Res. Popul. Ecol. (Kyoto) 15, 1–8 (1973).

    Article 

    Google Scholar 

  • 60.

    Chabanne, D. B. H., Pollock, K. H., Finn, H. & Bejder, L. Applying the multistate capture–recapture robust design to characterize metapopulation structure. Methods Ecol. Evol. 8, 1547–1557 (2017).

    Article 

    Google Scholar 

  • 61.

    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. multimodel inference 2, (2002).

  • 62.

    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63

    Royle, J., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Academic Press, 2014).

    Google Scholar 

  • 64.

    Rovero, F. & Zimmermann, F. Introduction. in Camera Trapping for Wildlife Research 1–7. (2016).

  • 65.

    Avgan, B., Zimmermann, F., Güntert, M., Arikan, F. & Breitenmoser, U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildlife Biol. 20, 217–221 (2014).

    Article 

    Google Scholar 

  • 66.

    Harmsen, B. J., Foster, R. J. & Quigley, H. Spatially explicit capture recapture density estimates: Robustness, accuracy and precision in a long-term study of jaguars (Pantheraonca). PLoS ONE 15, e0227468 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67

    Sollmann, R., Gardner, B. & Belant, J. L. How does spatial study design influence density estimates from spatial capture-recapture models?. PLoS ONE 7, e34575 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Zimmermann, F. et al. Abondance et densité du lynx dans le Sud du Jura suisse : estimation par capture-recapture photographique dans le compartiment I , durant l ’ hiver 2014 / 15, Vol. 41 (2015).

  • 69.

    Breitenmoser-Würsten, C. et al. Spatial and Social stability of a Eurasian lynx Lynxlynx population: an assessment of 10 years of observation in the Jura Mountains. Wildlife Biol. 13, 365–380 (2007).

    Article 

    Google Scholar 

  • 70.

    Fabiano, E. C. et al. Trends in cheetah Acinonyxjubatus density in north-central Namibia. Popul. Ecol. 62, 233–243 (2020).

    Article 

    Google Scholar 

  • 71.

    Jedrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus). Ecography (Cop.) 19, 122–138 (1996).

    Article 

    Google Scholar 

  • 72.

    Breitenmoser-Würsten, C., Vandel, J.-M., Zimmermann, F. & Breitenmoser, U. Demography of lynx Lynxlynx in the Jura Mountains. Wildlife Biol. 13, 381–392 (2007).

    Article 

    Google Scholar 

  • 73.

    Andren, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).

    Article 

    Google Scholar 

  • 74.

    Herrero, A. et al. Genetic analysis indicates spatial-dependent patterns of sex-biased dispersal in Eurasian lynx in Finland. PLoS ONE 16, e0246833 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Port, M. et al. Rise and fall of a Eurasian lynx (Lynx lynx) stepping-stone population in central Germany. Mammal Res. 66, 45–55 (2021).

    Article 

    Google Scholar 

  • 76.

    Pereira, J. A. et al. Population density of Geoffroy’s cat in scrublands of central Argentina. J. Zool. 283, 37–44 (2011).

    Article 

    Google Scholar 

  • 77.

    Breitenmoser, U. et al. Conservation of the lynx Lynxlynx in the Swiss Jura Mountains. Wildlife Biol. 13, 340–355 (2007).

    Article 

    Google Scholar 

  • 78.

    Basille, M. et al. What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people?. Ecography (Cop.) 32, 683–691 (2009).

    Article 

    Google Scholar 

  • 79.

    Filla, M. et al. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night. Ecol. Evol. 7, 6367–6381 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Nowicki, P. Food habit and diet of the lynx (Lynx lynx) in Europe. J. Wildl. Res. 2, (1997).

  • 81.

    Statistical Office of the Slovak Republic. Spring stock and hunting of game. Accessed 9 Nov 2020. http://datacube.statistics.sk/#!/view/en/VBD_SLOVSTAT/pl2006rs/v_pl2006rs_00_00_00_en (2019).

  • 82.

    Czech Statistical Office. Number and hunting of selected game species 2010 – 2019. Accessed 9 Nov 2020. https://www.czso.cz/documents/10180/122461942/1000052006e.pdf/3cd18662-1691-45df-a398-040ecdeeef00?version=1.1 (2020).

  • 83.

    Kutal, M., Váňa, M., Suchomel, J., Chapron, G. & Lopez-Bao, J. Trans-boundary edge effects in the western carpathians: the influence of hunting on large carnivore occupancy. PLoS ONE 11, e0168292 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Schmidt-Posthaus, H., Breitenmoser-Würsten, C., Posthaus, H., Bacciarini, L. & Breitenmoser, U. Causes of mortality in reintroduced Eurasian lynx in Switzerland. J. Wildl. Dis. 38, 84–92 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Mattisson, J. et al. Lethal male-male interactions in Eurasian lynx. Mamm. Biol. 78, 304–308 (2013).

    Article 

    Google Scholar 

  • 86.

    Sindičić, M. et al. Mortality in the Eurasian lynx population in Croatia over the course of 40 years. Mamm. Biol. 81, 290–294 (2016).

    Article 

    Google Scholar 

  • 87.

    Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).

    Article 

    Google Scholar 

  • 88.

    Červený, J., Krojerová-Prokešová, J., Kušta, T. & Koubek, P. The change in the attitudes of Czech hunters towards Eurasian lynx: Is poaching restricting lynx population growth?. J. Nat. Conserv. 47, 28–37 (2019).

    Article 

    Google Scholar 

  • 89.

    Kalaš, M. Contribution on the collisions of the European Lynx (Lynx lynx) with car traffic. in Migration corridors in the Western Carpathians: Malá FatraKysucké BeskydyMoravskoslezské BeskydyJavorníky (ed. Kutal, M.) (2013).

  • 90.

    Boitani, L. et al. Key actions for Large Carnivore populations in Europe. Report to DG Environment. Contract no. 07.0307/2013/654446/SER/B3 (European Commission, Bruxelles, 2015).

  • 91.

    Kratochvil, J. et al. History of the distribution of the lynx in Europe. Acta Sci. Nat. Brno 4, 1–50 (1968).

    Google Scholar 

  • 92.

    Zimmermann, F., BreitenmoserWursten, C. & Breitenmoser, U. Natal dispersal of Eurasian lynx (Lynx lynx) in Switzerland. J. Zool. 267, 381–395 (2005).

    Article 

    Google Scholar 

  • 93.

    Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Importance of dispersal for the expansion of a Eurasian lynx Lynxlynx population in a fragmented landscape. Oryx 41, 358–368 (2007).

    Article 

    Google Scholar 

  • 94.

    Kowalczyk, R., Górny, M. & Schmidt, K. Edge effect and influence of economic growth on Eurasian lynx mortality in the Białowieża Primeval Forest, Poland. 3–8. https://doi.org/10.1007/s13364-014-0203-z (2015).

  • 95.

    Černecký, J. et al. Správa o stave biotopov a druhov európskeho významu za obdobie rokov 2013–2018 v Slovenskej republike. (2020).


  • Source: Ecology - nature.com

    Q&A: Vivienne Sze on crossing the hardware-software divide for efficient artificial intelligence

    China’s transition to electric vehicles