Beal, A. P., Kiszka, J. J., Wells, R. S. & Eirin-Lopez, J. M. The Bottlenose dolphin Epigenetic Aging Tool (BEAT): a molecular age estimation tool for small cetaceans. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00561 (2019).
Garde, E., Heide-Jørgensen, M. P., Hansen, S. H., Nachman, G. & Forchhammer, M. C. Age-specific growth and remarkable longevity in narwhals (Monodon monoceros) from West Greenland as estimated by aspartic acid racemization. J. Mammal. 88, 49–58 (2007).
Google Scholar
Matkin, C. O., Ward Testa, J., Ellis, G. M. & Saulitis, E. L. Life history and population dynamics of southern Alaska resident killer whales (Orcinus orca). Mar. Mammal. Sci. 30, 460–479 (2014).
Google Scholar
Olesiuk, P., Bigg, M. & Ellis, G. Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Report of the International Whaling Commission. Special 12, 209–243 (1990).
Wells, R. S. Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies, Primatology Monographs (eds. J. Yamagiwa, & Karczmarski, L.) p. 149–172 (Springer, 2014).
Robeck, T. R., Willis, K., Scarpuzzi, M. R. & O’Brien, J. K. Survivorship pattern inaccuracies and inappropriate anthropomorphism in scholarly pursuits of killer whale (Orcinus orca) life history: a response to Franks et al.(2016). J. Mammal. 97, 899–905 (2016).
Google Scholar
Ellis, S. et al. Analyses of ovarian activity reveal repeated evolution of post-reproductive lifespans in toothed whales. Sci. Rep. 8, 1–10 (2018).
Google Scholar
Croft, D. P., Brent, L. J., Franks, D. W. & Cant, M. A. The evolution of prolonged life after reproduction. Trends Ecol. Evol. 30, 407–416 (2015).
Google Scholar
Wursig, B. & Jefferson, T. A. Methods of photo-identification for small cetaceans. Rep. Int. Whal. Comm. 12, 43–52 (1990).
Perrin, W. F. & Myrick, A. C. Age Determination Of Toothed Whales And Sirenians (International Whaling Commission, 1980).
Bryden, M. Research on Dolphins (eds. Bryden, M. M. & Harrison, R. J.) p. 211–224 (Clarendon Press Oxford, 1986).
Myrick, A. C., Yochem, P. K. & Cornell, L. H. Toward calibrating dentinal layers in captive killer whales by use of tetracycline labels. Rit Fiskid. 11, 285–296 (1988).
Best, P., Meÿer, M. & Lockyer, C. Killer whales in South African waters—a review of their biology. Afr. J. Mar. Sci. 32, 171–186 (2010).
Google Scholar
Foote, A. D., Newton, J., Piertney, S. B., Willerslev, E. & Gilbert, M. T. P. Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations. Mol. Ecol. 18, 5207–5217 (2009).
Google Scholar
Ford, J. K. et al. Shark predation and tooth wear in a population of northeastern Pacific killer whales. Aquat. Biol. 11, 213–224 (2011).
Google Scholar
Hohn, A. A. & Fernandez, S. Biases in dolphin age structure due to age estimation technique. Mar. Mammal. Sci. 15, 1124–1132 (1999).
Google Scholar
Lockyer, C. A report on patterns of deposition of dentine and cement in teeth of pilot whales, genus Globicephala. Rep. Int. Whal. Comm. 14, 137–161 (1993).
Waugh, D. A., Suydam, R. S., Ortiz, J. D. & Thewissen, J. Validation of Growth Layer Group (GLG) depositional rate using daily incremental growth lines in the dentin of beluga (Delphinapterus leucas (Pallas, 1776)) teeth. PLoS ONE 13, e0190498 (2018).
Google Scholar
Sergeant, D. E. Age Determination In Odontocete Whales From Dentinal Growth Layers (Norwegian Whaling Gazette, 1959).
Brodie, P. F. Mandibular layering in Delphinapterus leucas and age determination. Nature 221, 956–958 (1969).
Google Scholar
Goren, A. D. et al. Growth layer groups (GLGs) in the teeth of an adult belukha whale (Delphinapterus leucas) of known age: evidence for two annual layers. Mar. Mammal. Sci. 3, 14–21 (1987).
Google Scholar
Brodie, P. & Haulena, M. Dentinal growth layer counts of captive, known-age, mother and daughter belugas (Delphinapterus leucas): confirming two growth layer groups (GLG/2) per year; consequences for recovery and management. J Cetacean. Res Manag. 18, 23–31 (2018).
Brodie, P., Ramirez, K. & Haulena, M. Growth and maturity of belugas (Delphinapterus leucas) in Cumberland Sound, Canada, and in captivity: evidence for two growth layer groups (GLGs) per year in teeth. J. Cetacean Res. Manag. 13, 1–18 (2013).
Lockyer, C., Hohn, A. A., Doidge, D. W., Heide-Jørgensen, M. P. & Suydam, R. Age determination in belugas (Delphinapterus leucas in Belugas): a quest for validation of dentinal layering. Aquat. Mamm. 33, 293–304 (2007).
Google Scholar
Stewart, R., Campana, S., Jones, C. & Stewart, B. Bomb radiocarbon dating calibrates beluga (Delphinapterus leucas) age estimates. Can. J. Zool. 84, 1840–1852 (2006).
Google Scholar
Brodie, P. A reconsideration of aspects of growth, reproduction, and behavior of the white whale (Delphinapterus leucas), with reference to the Cumberland Sound, Baffin Island, population. J. Fish. Board Can. 28, 1309–1318 (1971).
Google Scholar
Brodie, P. F., Parsons, J. L. & Sergeant, D. E. Present status of the white whale (Delphinapterus leucas) in Cumberland Sound, Baffin Island.Rep. Int. Whal. Comm. 31, 579–582 (1981).
Robeck, T. R. et al. Reproduction, growth and development in captive beluga (Delphinapterus leucas). Zoo Biol. 24, 29–49 (2005).
Google Scholar
Bada, J., Brown, S. & Masters, P. Age determination of marine mammals based on aspartic acid racemization in the teeth and lens nucleus. Age Determination of Toothed Whales and Sirenians. p. 113–118 (Report of the International Whaling Commission, Special, 1980).
George, J. C. et al. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Can. J. Zool. 77, 571–580 (1999).
Google Scholar
Pleskach, K. et al. Use of mass spectrometry to measure aspartic acid racemization for ageing beluga whales. Mar. Mammal. Sci. 32, 1370–1380 (2016).
Google Scholar
Garde, E., Peter Heide-Jørgensen, M., Ditlevsen, S. & Hansen, S. H. Aspartic acid racemization rate in narwhal (Monodon monoceros) eye lens nuclei estimated by counting of growth layers in tusks. Polar Res. https://doi.org/10.3402/polar.v31i0.15865 (2012).
Herman, D. P. et al. Assessing age distributions of killer whale Orcinus orca populations from the composition of endogenous fatty acids in their outer blubber layers. Mar. Ecol. Prog. Ser. 372, 289–302 (2008).
Google Scholar
Herman, D. P. et al. Age determination of humpback whales Megaptera novaeangliae through blubber fatty acid compositions of biopsy samples. Mar. Ecol. Prog. Ser. 392, 277–293 (2009).
Google Scholar
Marcoux, M., Lesage, V., Thiemann, G. W., Iverson, S. J. & Ferguson, S. H. Age estimation of belugas, Delphinapterus leucas, using fatty acid composition: a promising method. Mar. Mammal. Sci. 31, 944–962 (2015).
Google Scholar
Olsen, M. T., Berube, M., Robbins, J. & Palsboll, P. J. Empirical evaluation of humpback whale telomere length estimates; quality control and factors causing variability in the singleplex and multiplex qPCR methods. BMC Genet. 13, 77 (2012).
Google Scholar
Broer, L. et al. Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 21, 1163–1168 (2013).
Google Scholar
Dunshea, G. et al. Telomeres as age markers in vertebrate molecular ecology. Mol. Ecol. Resour. 11, 225–235 (2011).
Google Scholar
Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).
Google Scholar
Tanabe, A. et al. Age estimation by DNA methylation in the Antarctic minke whale. Fish. Sci. 86, 35–41 (2020).
Google Scholar
Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).
Google Scholar
Rakyan, V. K. et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 20, 434–439 (2010).
Google Scholar
Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).
Google Scholar
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).
Google Scholar
Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).
Google Scholar
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).
Google Scholar
Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 1–24 (2019).
Google Scholar
Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960.e956 (2017).
Google Scholar
Cole, J. J. et al. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol. 18, 1–16 (2017).
Google Scholar
Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).
Google Scholar
Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 1–14 (2017).
Google Scholar
Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832 (2018).
Google Scholar
Meer, M. V., Podolskiy, D. I., Tyshkovskiy, A. & Gladyshev, V. N. A whole lifespan mouse multi-tissue DNA methylation clock. Elife 7, e40675 (2018).
Google Scholar
Ito, T., Teo, T. V., Evans, S. A., Neretti, N. & Sedivy, J. Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 22, 3480–3492 (2018).
Google Scholar
St Aubin, D., Deguise, S., Richard, P., Smith, T. & Geraci, J. Hematology and plasma chemistry as indicators of health and ecological status in beluga whales, Delphinapterus leucas. Arctic 54, 317–331 (2001).
Norman, S. A. et al. Seasonal hematology and serum chemistry of wild beluga whales (Delphinapterus leucas) in Bristol Bay, Alaska, USA. J. Wildl. Dis. 48, 21–32 (2012).
Google Scholar
Frost, K. J. & Suydam, R. S. Subsistence harvest of beluga or white whales (Delphinapterus leucas) in northern and western Alaska 1987–2006. J. Cetacea. Res. Manag. 11, 293–299 (2010).
Rosen, A. D. et al. DNA methylation age is accelerated in alcohol dependence. Transl. Psychiatry 8, 182 (2018).
Google Scholar
Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019).
Google Scholar
Gronniger, E. et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 6, e1000971 (2010).
Google Scholar
Doi, A. et al. Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).
Google Scholar
Vandiver, A. R. et al. Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biol. 16, 1–15 (2015).
Google Scholar
Li, Q. S., Sun, Y. & Wang, T. Epigenome-wide association study of Alzheimer’s disease replicates 22 differentially methylated positions and 30 differentially methylated regions. Clin. Epigenet. 12, 1–14 (2020).
Google Scholar
Sun, L., Zhang, X., Wang, T., Chen, M. & Qiao, H. Association of ANK1 variants with new‑onset type 2 diabetes in a Han Chinese population from northeast China. Exp. Ther. Med. 14, 3184–3190 (2017).
Google Scholar
Luoma, L. M. & Berry, F. B. Molecular analysis of NPAS3 functional domains and variants. BMC Mol. Biol. 19, 1–19 (2018).
Google Scholar
Cosgrove, D. et al. Genes influenced by MEF2C contribute to neurodevelopmental disease via gene expression changes that affect multiple types of cortical excitatory neurons. bioRxiv https://doi.org/10.1101/2019.12.16.877837 (2019).
Decourcelle, A. et al. O-GlcNAcylation links nutrition to the epigenetic downregulation of UNC5A during colon carcinogenesis. Cancers 12, 3168 (2020).
Google Scholar
Yang, T., Zhang, X.-B., Li, X.-N., Sun, M.-Z. & Gao, P.-Z. Homeobox C4 promotes hepatocellular carcinoma progression by the transactivation of Snail. Neoplasma 68, 23–30 (2020).
Yeung, B., Law, A. & Wong, C. K. Evolution and roles of stanniocalcin. Mol. Cell. Endocrinol. 349, 272–280 (2012).
Google Scholar
Chen, C., Jamaluddin, M. S., Yan, S., Sheikh-Hamad, D. & Yao, Q. Human stanniocalcin-1 blocks TNF-α–induced monolayer permeability in human coronary artery endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 906–912 (2008).
Google Scholar
Jourdain, E. & Karoliussen, R. Identification catalogue of Norwegian killer whales: 2007–2018. Figshare https://doi.org/10.608/m9.figshare.4205226 (2018).
Kuningas, S., Similä, T. & Hammond, P. S. Population size, survival and reproductive rates of northern Norwegian killer whales (Orcinus orca) in 1986-2003. J. Mar. Biol. Assoc. UK 94, 1277 (2014).
Google Scholar
Christensen, I. Growth and reproduction of killer whales, Orcinus orca, in Norwegian coastal waters. Rep. Int. Whal. Commn 6, 253–258 (1984).
Jourdain, E., Vongraven, D., Bisther, A. & Karoliussen, R. First longitudinal study of seal-feeding killer whales (Orcinus orca) in Norwegian coastal waters. PLoS ONE 12, e0180099 (2017).
Google Scholar
Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences. bioRxiv https://doi.org/10.1101/2021.01.07.425637 (2021).
Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).
Google Scholar
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1 (2010).
Google Scholar
Shao, J. Linear model selection by cross-validation. J. Am. Stat. Assoc. 88, 486–494 (1993).
Google Scholar
Zhang, P. Model selection via multifold cross validation. Ann. Statist. 21, 299–313 (1993).
Team, R. C. R.: A language and environment for statistical computing (2020).
Source: Ecology - nature.com