Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).
Google Scholar
Briand, M. J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555. https://doi.org/10.1371/journal.pone.0131555 (2015).
Google Scholar
Fey, P. et al. Sources of organic matter in an atypical phytoplankton rich coral ecosystem, Marquesas Islands: composition and properties. Mar. Biol. 167, 92. https://doi.org/10.1007/s00227-020-03703-z (2020).
Google Scholar
Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22. https://doi.org/10.1016/j.fooweb.2016.07.002 (2016).
Google Scholar
Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00024 (2018).
Google Scholar
Halpern, B. S. et al. A Global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).
Google Scholar
Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).
Google Scholar
Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).
Google Scholar
Wyatt, A. S. J., Waite, A. M. & Humphries, S. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31, 1029–1044 (2012).
Google Scholar
Letourneur, Y. et al. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32, 1091–1102. https://doi.org/10.1007/s00338-013-1073-6 (2013).
Google Scholar
Zhu, Y., Newman, S. P., Reid, W. D. K. & Polunin, N. V. C. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160. https://doi.org/10.1007/s00227-019-3599-9 (2019).
Google Scholar
McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2015).
Google Scholar
Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. https://doi.org/10.1126/sciadv.abf3792 (2021).
Google Scholar
Mann, K. H. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnol. Oceanogr. 33, 910–930 (1988).
Google Scholar
Antonio, B., Maria Teresa, A.-O. & Manuel, V. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser. 318, 89–102 (2006).
Google Scholar
Gazeau, F., Smith, S. V., Gentili, B., Frankignoulle, M. & Gattuso, J.-P. The European coastal zone: characterization and first assessment of ecosystem metabolism. Est. Coast. Shelf Sci. 60, 673–694. https://doi.org/10.1016/j.ecss.2004.03.007 (2004).
Google Scholar
Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
Hamner, W. M., Colin, P. L. & Hamner, P. P. Export-import dynamics of zooplankton on a coral reef in Palau. Mar. Ecol. Prog. Ser. 334, 83–92 (2007).
Google Scholar
Carassou, L., Kulbicki, M., Nicola, T. J. R. & Polunin, N. V. C. Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat. Living Resour. 21, 1–12 (2008).
Google Scholar
Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P. & Parmentier, E. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56, 10–17. https://doi.org/10.1007/s10228-008-0053-2 (2009).
Google Scholar
Riera, P. & Richard, P. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar. Coast. Shelf Sci. 42, 347–360 (1996).
Google Scholar
Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Fresh. Wat. Res. 50, 839–866 (1999).
Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).
Google Scholar
Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).
Google Scholar
Roff, G. et al. Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar. Biol. 161, 1385–1393. https://doi.org/10.1007/s00227-014-2426-6 (2014).
Google Scholar
Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).
Google Scholar
Cabioch, G. et al. Successive reef depositional events along the Marquesas foreslopes (French Polynesia) since 26 ka. Mar. Geol. 254, 18–34. https://doi.org/10.1016/j.margeo.2008.04.014 (2008).
Google Scholar
Galzin, R., Duron, S. D. & Meyer, J. Y. Biodiversité terrestre et marine des îles Marquises, Polynésie française. (Société française d’Ichtyologie, 2016).
SO CORAIL. Site d’observation CORAIL, https://sextant.ifremer.fr/record/le51de1b-7979-4487-b5d5-329394d166da (2018).
Martinez, E., M., R. & Maamaatuaiahutapu, K. in Biodiversité terrestre et marine des îles Marquises, Polynésie française (eds Galzin R., Duron S.-D., & Meyer J.-Y) 123–136 (Société Française d’Ichtyologie, 2016).
Houk, P. & Musburger, C. Trophic interactions and ecological stability across coral reefs in the Marshall Islands. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).
Google Scholar
Raapoto, H., Martinez, E., Petrenko, A., Doglioli, A. M. & Maes, C. Modeling the Wake of the Marquesas Archipelago. J. Geophys. Res. Oceans 123, 1213–1228. https://doi.org/10.1002/2017jc013285 (2018).
Google Scholar
Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 8 (2001).
De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).
Google Scholar
Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).
Google Scholar
Pinnegar, J. & Polunin, N. V. C. Differential fractionation of d13C and d15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).
Google Scholar
De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).
Google Scholar
Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).
Google Scholar
Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946. https://doi.org/10.4319/lo.2013.58.6.1931 (2013).
Google Scholar
Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–710 (2002).
Google Scholar
Meziane, T. et al. Inter-specific and geographical variations in the fatty acid composition of mangrove leaves: implications for using fatty acids as a taxonomic tool and tracers of organic matter. Mar. Biol. 150, 1103–1113. https://doi.org/10.1007/s00227-006-0424-z (2007).
Google Scholar
Parrish, C. C. et al. in Marine Chemistry (ed P. J. Wangersky) 193–223 (Springer Berlin Heidelberg, 2000).
Alfaro, A. C., Thomas, F., Sergent, L. & Duxbury, M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Est. Coast. Shelf Sci. 70, 271–286. https://doi.org/10.1016/j.ecss.2006.06.017 (2006).
Google Scholar
Meyers, P. A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27, 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1 (1997).
Google Scholar
Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. in Advances in Marine Biology Vol. 46 225–340 (Academic Press, 2003).
Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219–240. https://doi.org/10.1016/0022-0981(89)90029-4 (1989).
Google Scholar
Volkman, J. K., Johns, R. B., Gillan, F. T., Perry, G. J. & Bavor, H. J. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44, 1133–1143. https://doi.org/10.1016/0016-7037(80)90067-8 (1980).
Google Scholar
Lee, R. F., Hirota, J. & Barnett, A. M. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Res. A 18, 1147. https://doi.org/10.1016/0011-7471(71)90023-4 (1971).
Google Scholar
Wakeham, S. G., Hedges, J. I., Lee, C., Peterson, M. L. & Hernes, P. J. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep Sea Res. Part II 44, 2131–2162. https://doi.org/10.1016/S0967-0645(97)00035-0 (1997).
Google Scholar
Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochem. 29, 1547–1559. https://doi.org/10.1016/S0146-6380(98)00177-6 (1998).
Google Scholar
Meziane, T., Agata, D. F. & Lee, S. Y. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities. Mar. Ecol. Prog. Ser. 312, 15–27 (2006).
Google Scholar
Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269 (2003).
Google Scholar
Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).
Google Scholar
R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2018).
du Percie, S. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).
Google Scholar
Page, H. M. et al. Stable isotopes reveal trophic relationships and diet of consumers in temperate kelp forest and coral reef ecosystems. Oceanography 26, 180–189 (2013).
Google Scholar
Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109. https://doi.org/10.1038/s41598-018-22463-x (2018).
Google Scholar
Bellwood, D. R. & Choat, J. H. A functional analysis of grazing in parrotfishes (family Scaridae): The ecological implications. Environ. Biol. Fish. 28, 189–214 (1990).
Google Scholar
Choat, J. H., Clements, K. D. & Robbins, W. D. The trophic status of herbivorous fishes on coral reefs. I: Dietary analyses. Mar. Biol. 140, 613–623 (2002).
Google Scholar
Dromard, C. R. et al. Resource use of two damselfishes, Stegastes planifrons and Stegastes adustus, on Guadeloupean reefs (Lesser Antilles): Inference from stomach content and stable isotope analysis. J. Exp. Mar. Biol. Ecol. 440, 116–125. https://doi.org/10.1016/j.jembe.2012.12.011 (2013).
Google Scholar
Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738. https://doi.org/10.4319/lo.1986.31.4.0717 (1986).
Google Scholar
Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327. https://doi.org/10.1007/s00338-020-01964-0 (2020).
Google Scholar
Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Lin. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2016).
Google Scholar
Bradley, C. J., Longenecker, K., Pyle, R. L. & Popp, B. N. Compound-specific isotopic analysis of amino acids reveals dietary changes in mesophotic coral-reef fish. Mar. Ecol. Prog. Ser. 558, 65–79 (2016).
Google Scholar
Raimbault, P., Garcia, N. & Cerutti, F. Distribution of inorganic and organic nutrients in the South Pacific Ocean-evidence for long-term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences 5, 281. https://doi.org/10.5194/bg-5-281-2008 (2008).
Google Scholar
Savoye, N. et al. Dynamics of particulate organic matter d15N and d13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar. Ecol. Prog. Ser. 255, 27–41 (2003).
Google Scholar
Montoya, J. P. & McCarthy, J. J. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res. 17, 439–464. https://doi.org/10.1093/plankt/17.3.439 (1995).
Google Scholar
Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250. https://doi.org/10.1111/ele.12226 (2014).
Google Scholar
Letourneur, Y., Briand, M. J. & Graham, N. A. J. Coral reef degradation alters the isotopic niche of reef fishes. Mar. Biol. 164, 224. https://doi.org/10.1007/s00227-017-3272-0 (2017).
Google Scholar
Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).
Google Scholar
Viviani, J. et al. Synchrony patterns reveal different degrees of trophic guild vulnerability after disturbances in a coral reef fish community. Divers. Distrib. 25, 1210–1221. https://doi.org/10.1111/ddi.12931 (2019).
Google Scholar
Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162. https://doi.org/10.1111/j.1461-0248.2010.01565.x (2011).
Google Scholar
Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).
Google Scholar
Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).
Google Scholar
Jackson, J. B. C. What is natural in the coastal oceans?. Proc. Natl. Acad. Sci. USA 98, 5411–5418 (2001).
Google Scholar
Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of Reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).
Google Scholar
Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521-1527.e1526. https://doi.org/10.1016/j.cub.2019.03.044 (2019).
Google Scholar
Source: Ecology - nature.com