in

Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web

[adace-ad id="91168"]
  • 1.

    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).

    Article 

    Google Scholar 

  • 2.

    Briand, M. J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555. https://doi.org/10.1371/journal.pone.0131555 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Fey, P. et al. Sources of organic matter in an atypical phytoplankton rich coral ecosystem, Marquesas Islands: composition and properties. Mar. Biol. 167, 92. https://doi.org/10.1007/s00227-020-03703-z (2020).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22. https://doi.org/10.1016/j.fooweb.2016.07.002 (2016).

    Article 

    Google Scholar 

  • 5.

    Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00024 (2018).

    Article 

    Google Scholar 

  • 6.

    Halpern, B. S. et al. A Global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Wyatt, A. S. J., Waite, A. M. & Humphries, S. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31, 1029–1044 (2012).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Letourneur, Y. et al. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32, 1091–1102. https://doi.org/10.1007/s00338-013-1073-6 (2013).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Zhu, Y., Newman, S. P., Reid, W. D. K. & Polunin, N. V. C. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160. https://doi.org/10.1007/s00227-019-3599-9 (2019).

    Article 

    Google Scholar 

  • 12.

    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2015).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. https://doi.org/10.1126/sciadv.abf3792 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Mann, K. H. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnol. Oceanogr. 33, 910–930 (1988).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Antonio, B., Maria Teresa, A.-O. & Manuel, V. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser. 318, 89–102 (2006).

    Article 

    Google Scholar 

  • 16.

    Gazeau, F., Smith, S. V., Gentili, B., Frankignoulle, M. & Gattuso, J.-P. The European coastal zone: characterization and first assessment of ecosystem metabolism. Est. Coast. Shelf Sci. 60, 673–694. https://doi.org/10.1016/j.ecss.2004.03.007 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).

    Google Scholar 

  • 18.

    Hamner, W. M., Colin, P. L. & Hamner, P. P. Export-import dynamics of zooplankton on a coral reef in Palau. Mar. Ecol. Prog. Ser. 334, 83–92 (2007).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Carassou, L., Kulbicki, M., Nicola, T. J. R. & Polunin, N. V. C. Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat. Living Resour. 21, 1–12 (2008).

    Article 

    Google Scholar 

  • 20.

    Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P. & Parmentier, E. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56, 10–17. https://doi.org/10.1007/s10228-008-0053-2 (2009).

    Article 

    Google Scholar 

  • 21.

    Riera, P. & Richard, P. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar. Coast. Shelf Sci. 42, 347–360 (1996).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Fresh. Wat. Res. 50, 839–866 (1999).

    Google Scholar 

  • 23.

    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Roff, G. et al. Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar. Biol. 161, 1385–1393. https://doi.org/10.1007/s00227-014-2426-6 (2014).

    Article 

    Google Scholar 

  • 26.

    Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).

    Article 

    Google Scholar 

  • 27.

    Cabioch, G. et al. Successive reef depositional events along the Marquesas foreslopes (French Polynesia) since 26 ka. Mar. Geol. 254, 18–34. https://doi.org/10.1016/j.margeo.2008.04.014 (2008).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Galzin, R., Duron, S. D. & Meyer, J. Y. Biodiversité terrestre et marine des îles Marquises, Polynésie française. (Société française d’Ichtyologie, 2016).

  • 29.

    SO CORAIL. Site d’observation CORAIL, https://sextant.ifremer.fr/record/le51de1b-7979-4487-b5d5-329394d166da (2018).

  • 30.

    Martinez, E., M., R. & Maamaatuaiahutapu, K. in Biodiversité terrestre et marine des îles Marquises, Polynésie française (eds Galzin R., Duron S.-D., & Meyer J.-Y) 123–136 (Société Française d’Ichtyologie, 2016).

  • 31.

    Houk, P. & Musburger, C. Trophic interactions and ecological stability across coral reefs in the Marshall Islands. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Raapoto, H., Martinez, E., Petrenko, A., Doglioli, A. M. & Maes, C. Modeling the Wake of the Marquesas Archipelago. J. Geophys. Res. Oceans 123, 1213–1228. https://doi.org/10.1002/2017jc013285 (2018).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 8 (2001).

    Google Scholar 

  • 34.

    De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Pinnegar, J. & Polunin, N. V. C. Differential fractionation of d13C and d15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).

    Article 

    Google Scholar 

  • 37.

    De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946. https://doi.org/10.4319/lo.2013.58.6.1931 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–710 (2002).

    Article 

    Google Scholar 

  • 41.

    Meziane, T. et al. Inter-specific and geographical variations in the fatty acid composition of mangrove leaves: implications for using fatty acids as a taxonomic tool and tracers of organic matter. Mar. Biol. 150, 1103–1113. https://doi.org/10.1007/s00227-006-0424-z (2007).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Parrish, C. C. et al. in Marine Chemistry (ed P. J. Wangersky) 193–223 (Springer Berlin Heidelberg, 2000).

  • 43.

    Alfaro, A. C., Thomas, F., Sergent, L. & Duxbury, M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Est. Coast. Shelf Sci. 70, 271–286. https://doi.org/10.1016/j.ecss.2006.06.017 (2006).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Meyers, P. A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27, 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1 (1997).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. in Advances in Marine Biology Vol. 46 225–340 (Academic Press, 2003).

  • 46.

    Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219–240. https://doi.org/10.1016/0022-0981(89)90029-4 (1989).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Volkman, J. K., Johns, R. B., Gillan, F. T., Perry, G. J. & Bavor, H. J. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44, 1133–1143. https://doi.org/10.1016/0016-7037(80)90067-8 (1980).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Lee, R. F., Hirota, J. & Barnett, A. M. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Res. A 18, 1147. https://doi.org/10.1016/0011-7471(71)90023-4 (1971).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Wakeham, S. G., Hedges, J. I., Lee, C., Peterson, M. L. & Hernes, P. J. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep Sea Res. Part II 44, 2131–2162. https://doi.org/10.1016/S0967-0645(97)00035-0 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochem. 29, 1547–1559. https://doi.org/10.1016/S0146-6380(98)00177-6 (1998).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Meziane, T., Agata, D. F. & Lee, S. Y. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities. Mar. Ecol. Prog. Ser. 312, 15–27 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269 (2003).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2018).

  • 55.

    du Percie, S. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Page, H. M. et al. Stable isotopes reveal trophic relationships and diet of consumers in temperate kelp forest and coral reef ecosystems. Oceanography 26, 180–189 (2013).

    Article 

    Google Scholar 

  • 57.

    Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109. https://doi.org/10.1038/s41598-018-22463-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Bellwood, D. R. & Choat, J. H. A functional analysis of grazing in parrotfishes (family Scaridae): The ecological implications. Environ. Biol. Fish. 28, 189–214 (1990).

    Article 

    Google Scholar 

  • 59.

    Choat, J. H., Clements, K. D. & Robbins, W. D. The trophic status of herbivorous fishes on coral reefs. I: Dietary analyses. Mar. Biol. 140, 613–623 (2002).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Dromard, C. R. et al. Resource use of two damselfishes, Stegastes planifrons and Stegastes adustus, on Guadeloupean reefs (Lesser Antilles): Inference from stomach content and stable isotope analysis. J. Exp. Mar. Biol. Ecol. 440, 116–125. https://doi.org/10.1016/j.jembe.2012.12.011 (2013).

    Article 

    Google Scholar 

  • 61.

    Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738. https://doi.org/10.4319/lo.1986.31.4.0717 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 62.

    Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327. https://doi.org/10.1007/s00338-020-01964-0 (2020).

    Article 

    Google Scholar 

  • 63.

    Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Lin. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2016).

    Article 

    Google Scholar 

  • 64.

    Bradley, C. J., Longenecker, K., Pyle, R. L. & Popp, B. N. Compound-specific isotopic analysis of amino acids reveals dietary changes in mesophotic coral-reef fish. Mar. Ecol. Prog. Ser. 558, 65–79 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 65.

    Raimbault, P., Garcia, N. & Cerutti, F. Distribution of inorganic and organic nutrients in the South Pacific Ocean-evidence for long-term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences 5, 281. https://doi.org/10.5194/bg-5-281-2008 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 66.

    Savoye, N. et al. Dynamics of particulate organic matter d15N and d13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar. Ecol. Prog. Ser. 255, 27–41 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 67.

    Montoya, J. P. & McCarthy, J. J. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res. 17, 439–464. https://doi.org/10.1093/plankt/17.3.439 (1995).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250. https://doi.org/10.1111/ele.12226 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 69.

    Letourneur, Y., Briand, M. J. & Graham, N. A. J. Coral reef degradation alters the isotopic niche of reef fishes. Mar. Biol. 164, 224. https://doi.org/10.1007/s00227-017-3272-0 (2017).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).

    Article 

    Google Scholar 

  • 71.

    Viviani, J. et al. Synchrony patterns reveal different degrees of trophic guild vulnerability after disturbances in a coral reef fish community. Divers. Distrib. 25, 1210–1221. https://doi.org/10.1111/ddi.12931 (2019).

    Article 

    Google Scholar 

  • 72.

    Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162. https://doi.org/10.1111/j.1461-0248.2010.01565.x (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 75.

    Jackson, J. B. C. What is natural in the coastal oceans?. Proc. Natl. Acad. Sci. USA 98, 5411–5418 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 76.

    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of Reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 77.

    Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521-1527.e1526. https://doi.org/10.1016/j.cub.2019.03.044 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Association of bacterial community types, functional microbial processes and lung disease in cystic fibrosis airways

    Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation