in

Multidimensional natal isotopic niches reflect migratory patterns in birds

  • 1.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article 

    Google Scholar 

  • 2.

    Chase, J. M. & Leibold, M. A. Ecological Niches. Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).

    Book 

    Google Scholar 

  • 3.

    Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. 106, 19659–19665 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Heldbjerg, H. & Fox, T. Long-term population declines in Danish trans-Saharan migrant birds. Bird Study 55, 267–279 (2008).

    Article 

    Google Scholar 

  • 5.

    Evans, K. L., Newton, J., Mallord, J. W. & Markman, S. Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation. PLoS ONE 7, e34542 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).

    Article 

    Google Scholar 

  • 7.

    Heiss, M. The importance of Besh Barmag bottleneck (Azerbaijan) for Eurasian migrant birds. Acta Ornithol. 48, 151–164 (2013).

    Article 

    Google Scholar 

  • 8.

    Buechley, E. R. et al. Identifying critical migratory bottlenecks and high-use areas for an endangered migratory soaring bird across three continents. J. Avian Biol. 49, e01629 (2018).

    Article 

    Google Scholar 

  • 9.

    Cardenas-Ortiz, L., Bayly, N. J., Kardynal, K. J. & Hobson, K. A. Defining catchment origins of a geographical bottleneck: Implications of population mixing and phenological overlap for the conservation of Neotropical migratory birds. The Condor 122, 004 (2020).

    Article 

    Google Scholar 

  • 10.

    Yohannes, E., Hobson, K. A. & Pearson, D. J. Feather stable-isotope profiles reveal stopover habitat selection and site fidelity in nine migratory species moving through sub-Saharan Africa: Feather stable-isotope profiles reveal stopover habitat selection. J. Avian Biol. 38, 347–355 (2007).

    Google Scholar 

  • 11.

    Hobson, K. A. & Koehler, G. On the use of stable oxygen isotope (δ18O) measurements for tracking avian movements in North America. Ecol. Evol. 5, 799–806 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis: Stable isotopes as measures of niche width. J. Anim. Ecol. 73, 1007–1012 (2004).

    Article 

    Google Scholar 

  • 13.

    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).

    Article 

    Google Scholar 

  • 14.

    Hobson, K. Isotopic ornithology: A perspective. J. Ornithol. https://doi.org/10.1007/s10336-011-0653-x (2011).

    Article 

    Google Scholar 

  • 15.

    Hoenighaus, D. J., Winemiller, K. O. & Agostinho, A. A. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10, 1019–1033 (2007).

    Article 

    Google Scholar 

  • 16.

    Hette-Tronquart, N. Isotopic niche is not equal to trophic niche. Ecol. Lett. 22, 1987–1989 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology: Avian stable isotope analysis. Ibis 150, 447–461 (2008).

    Article 

    Google Scholar 

  • 18.

    Bowen, G. J. Isoscapes: Spatial pattern in isotopic biogeochemistry. Annu. Rev. Earth Planet. Sci. 38, 161–187 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Hobson, K. A., Bowen, G. J., Wassenaar, L. I., Ferrand, Y. & Lormee, H. Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141, 477–488 (2004).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Magozzi, S., Vander Zanden, H. B., Wunder, M. B. & Bowen, G. J. Mechanistic model predicts tissue-environment relationships and trophic shifts in animal hydrogen and oxygen isotope ratios. Oecologia 191, 777–789 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Vander Zanden, H. B., Soto, D. X., Bowen, G. J. & Hobson, K. A. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2016 (2016).

    Article 

    Google Scholar 

  • 22.

    Pekarsky, S. et al. Enriching the isotopic toolbox for migratory connectivity analysis: A new approach for migratory species breeding in remote or unexplored areas. Divers. Distrib. 21, 416–427 (2015).

    Article 

    Google Scholar 

  • 23.

    Shipley, O. N. & Matich, P. Studying animal niches using bulk stable isotope ratios: An updated synthesis. Oecologia 193, 27–51 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia 120, 314–326 (1999).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Hobson, K. A. & Wassenaar, L. I. Tracking Animal Migration with Stable Isotopes (Academic Press, 2018).

    Google Scholar 

  • 26.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 16 (2002).

    Google Scholar 

  • 27.

    Abrantes, K. G., Barnett, A. & Bouillon, S. Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Funct. Ecol. 28, 270–282 (2014).

    Article 

    Google Scholar 

  • 28.

    Wang, J., Chapman, D., Xu, J., Wang, Y. & Gu, B. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA. PLoS ONE 13, e0197584 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Steenweg, R. J. et al. Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic. Ecol. Evol. 7, 8742–8752 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Rader, J. A. et al. Isotopic niches support the resource breadth hypothesis. J. Anim. Ecol. 86, 405–413 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Ma, C., Shen, Y., Bearup, D., Fagan, W. F. & Liao, J. Spatial variation in branch size promotes metapopulation persistence in dendritic river networks. Freshw. Biol. 65, 426–434 (2020).

    Article 

    Google Scholar 

  • 32.

    Langin, K. M. et al. Hydrogen isotopic variation in migratory bird tissues of known origin: Implications for geographic assignment. Oecologia 152, 449–457 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).

    Article 

    Google Scholar 

  • 34.

    Cresswell, W. Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: The serial residency hypothesis. Ibis 156, 493–510 (2014).

    Article 

    Google Scholar 

  • 35.

    Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413 (2016).

    Article 

    Google Scholar 

  • 36.

    Laube, I., Graham, C. H. & Böhning-Gaese, K. Niche availability in space and time: Migration in Sylvia warblers. J. Biogeogr. 42, 1896–1906 (2015).

    Article 

    Google Scholar 

  • 37.

    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).

    Article 

    Google Scholar 

  • 38.

    Dunn, E., Hobson, K., Wassenaar, L., Hussell, D. & Allen, M. Identification of summer origins of songbirds migrating through southern Canada in Autumn. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-00048-010204 (2006).

    Article 

    Google Scholar 

  • 39.

    Briedis, M. et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J. Avian Biol. 47, 743–748 (2016).

    Article 

    Google Scholar 

  • 40.

    Briedis, M. et al. Broad-scale patterns of the Afro-Palaearctic landbird migration. Glob. Ecol. Biogeogr. 29, 722–735 (2020).

    Article 

    Google Scholar 

  • 41.

    Cortesi, N., Gonzalez-Hidalgo, J. C., Brunetti, M. & Martin-Vide, J. Daily precipitation concentration across Europe 1971–2010. Nat. Hazards Earth Syst. Sci. 12, 2799–2810 (2012).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Salewski, V., Bairlein, F. & Leisler, B. Niche partitioning of two Palearctic passerine migrants with Afrotropical residents in their West African winter quarters. Behav. Ecol. 14, 493–502 (2003).

    Article 

    Google Scholar 

  • 43.

    Jones, P., Salewski, V., Vickery, J. & Mapaure, I. Habitat use and densities of co-existing migrant Willow Warblers Phylloscopus trochilus and resident eremomelas Eremomela spp. in Zimbabwe. Bird Study 57, 44–55 (2010).

    Article 

    Google Scholar 

  • 44.

    Brändle, M., Prinzing, A., Pfeifer, R. & Brandl, R. Dietary niche breadth for Central European birds: Correlations with species-specific traits. Evol. Ecol. Res. 4(5), 643–657 (2002).

    Google Scholar 

  • 45.

    Hahn, S., Amrhein, V., Zehtindijev, P. & Liechti, F. Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia 173, 1217–1225 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Finch, T., Butler, S. J., Franco, A. M. A. & Cresswell, W. Low migratory connectivity is common in long-distance migrant birds. J. Anim. Ecol. 86, 662–673 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 47.

    Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236 (2019).

    Article 

    Google Scholar 

  • 48.

    Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).

    Article 

    Google Scholar 

  • 49.

    Rubenstein, D. R. Linking breeding and wintering ranges of a migratory songbird using stable isotopes. Science 295, 1062–1065 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).

    Article 

    Google Scholar 

  • 51.

    Ockendon, N., Hewson, C. M., Johnston, A. & Atkinson, P. W. Declines in British-breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints on arrival time advancement. Bird Study 59, 111–125 (2012).

    Article 

    Google Scholar 

  • 52.

    Keller, G. S. & Yahner, R. H. Declines of migratory songbirds: Evidence for Wintering-ground causes. Northeast. Nat. 13, 83–92 (2006).

    Article 

    Google Scholar 

  • 53.

    Morrison, C. A., Robinson, R. A., Clark, J. A., Risely, K. & Gill, J. A. Recent population declines in Afro-Palaearctic migratory birds: The influence of breeding and non-breeding seasons. Divers. Distrib. 19, 1051–1058 (2013).

    Article 

    Google Scholar 

  • 54.

    López-Calderón, C. et al. Environmental conditions during winter predict age- and sex-specific differences in reproductive success of a trans-Saharan migratory bird. Sci. Rep. 7, 18082 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Møller, A. P. & Hobson, K. A. Heterogeneity in stable isotope profiles predicts coexistence of populations of barn swallows Hirundo rustica differing in morphology and reproductive performance. Proc. R. Soc. Lond. B Biol. Sci. 271, 1355–1362 (2004).

    Article 

    Google Scholar 

  • 56.

    Hobson, K., Møller, A. & Wilgenburg, S. L. V. A multi-isotope (δ13C, δ15N, δ2H) approach to connecting European breeding and African wintering populations of barn swallow (Hirundo rustica). Anim. Migr. https://doi.org/10.2478/ami-2012-0002 (2012).

    Article 

    Google Scholar 

  • 57.

    Newton, I. The Migration Ecology of Birds (Academic Press, 2007).

    Google Scholar 

  • 58.

    Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 2011).

    Google Scholar 

  • 60.

    Pedrini, P., Rossi, F. & Rizzoli, F. Le Alpi italiane quale barriera ecologica nel corso della migrazione post-riproduttiva attraverso l’Europa. Risultati generali del della prima fase del Progetto Alpi (1997–2002). Biol. Conserv. Fauna 116, 1–336 (2008).

    Google Scholar 

  • 61.

    Bontempo, L. et al. Comparison of methods for stable isotope ratio (δ13C, δ15N, δ2H, δ18O) measurements of feathers. Methods Ecol. Evol. 5, 363–371 (2014).

    Article 

    Google Scholar 

  • 62.

    Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39, 211–217 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Wassenaar, L. I. & Hobson, K. A. Stable-hydrogen isotope heterogeneity in keratinous materials: Mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun. Mass Spectrom. 20, 2505–2510 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M. & Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl. Chem. 86, 425–467 (2014).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Del Hoyo, J., Elliott, A., Sargatal, J. & Christie, D. Handbook of the Birds of the World (Lynx Edicions, 2013).

    Google Scholar 

  • 66.

    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian ellipses in R: Bayesian isotopic niche metrics. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How diet affects tumors

    Coupling power and hydrogen sector pathways to benefit decarbonization