in

Multiple maternal risk-management adaptations in the loggerhead sea turtle (Caretta caretta) mitigate clutch failure caused by catastrophic storms and predators

  • 1.

    Cody, M. L. A general theory of clutch size. Evolution 1, 174–184 (1966).

    Article  Google Scholar 

  • 2.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 2001).

    Google Scholar 

  • 3.

    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).

    Article  Google Scholar 

  • 4.

    Cassill, D. L. Extending r/K selection with a maternal risk-management model that classifies animal species into divergent natural selection categories. Sci. Rep. 9, 6111 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Cassill, D. L. & Watkins, A. The evolution of cooperative hierarchies through natural selection processes. J. Bioecon. 12, 29–42 (2010).

    Article  Google Scholar 

  • 6.

    Cassill, D. L. Yoyo-bang: a risk-aversion investment strategy by a perennial insect society. Oecologia 132, 150–158 (2002).

    ADS  PubMed  Article  Google Scholar 

  • 7.

    Babin, P. J. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome. Gene 413, 76–82 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. B 273, 1375–1383 (2006).

    PubMed  Article  Google Scholar 

  • 9.

    Blackburn, D. G. Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Am. Zool. 32, 313–321 (1992).

    Article  Google Scholar 

  • 10.

    Doody, J. S., Burghardt, G. M. & Dinets, V. Breaking the social: non-social dichotomy—a role for reptiles in vertebrate social behavior research?. Ethology 119, 95–103 (2013).

    Article  Google Scholar 

  • 11.

    Doody, J. S., Dinets, V. & Burghardt, G. M. The Secret Social Lives of Reptiles (Johns Hopkins University Press, Baltimore, 2021).

    Google Scholar 

  • 12.

    Joyce, W. G. A review of the fossil record of basal Mesozoic turtles. Bull. Peabody Mus. Nat. Hist. 58, 65–113 (2017).

    Article  Google Scholar 

  • 13.

    Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L. & Jagoutz, O. Arc-continent collisions in the tropics set Earth’s climate state. Science 364, 181–184 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Zelenitsky, D. K., Therrien, F., Joyce, W. G. B. & Brinkman, D. First fossil gravid turtle provides insight into the evolution of reproductive traits in turtles. Biol. Lett. 4, 715–718 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Lawver, D. R. & Jackson, F. D. A review of the fossil record of turtle reproduction: eggs, embryos, nests and copulating pairs. Bull. Peabody Mus. Nat. Hist. 55, 215–236 (2014).

    Article  Google Scholar 

  • 16.

    Lawver, D. R. & Jackson, F. D. A fossil egg clutch from the stem turtle Meiolania platyceps: implications for the evolution of turtle reproductive biology. J. Vert. Paleon. 36, e1223685 (2016).

    Article  Google Scholar 

  • 17.

    Lawver, D. R. & Jackson, F. D. An accumulation of turtle eggs with embryos from the Campanian (Upper Cretaceous) Judith River Formation of Montana. Cretac. Res. 69, 90–99 (2017).

    Article  Google Scholar 

  • 18.

    Ewert, M. A., Firth, S. J. & Nelson, C. E. Normal and multiple eggshells in batagurine turtles and their implications for dinosaurs and other reptiles. Can. J. Zool. 62, 1834–1841 (1984).

    Article  Google Scholar 

  • 19.

    Miller, J. D., Lutz, P. L. & Musick, J. A. Reproduction in sea turtles. Biol. Sea Turt. I, 51–82 (1997).

    Google Scholar 

  • 20.

    Ackerman, R. A. The nest environment and the embryonic development of sea turtles. Biol. Sea Turt. 1, 83–106 (1997).

    Google Scholar 

  • 21.

    Rees, A. F. & Margaritoulis, D. Beach temperatures, incubation durations and estimated hatchling sex ratio for loggerhead sea turtle nests in southern Kyparissia Bay Greece. Testudo 6, 23–36 (2004).

    Google Scholar 

  • 22.

    Garmestani, A. S., Percival, H. F., Portier, K. M. & Rice, K. G. Nest-site selection by the loggerhead sea turtle in Florida’s Ten Thousand Islands. J. Herpetol. 34, 504–510 (2000).

    Article  Google Scholar 

  • 23.

    Mansfield, K. L., Wyneken, J., Porter, W. P. & Luo, J. First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche. Proc. R. Soc. B 281, 20133039 (2014).

    PubMed  Article  Google Scholar 

  • 24.

    Barton, B. T. & Roth, J. D. Implications of intraguild predation for sea turtle nest protection. Biol. Conserv. 141, 2139–2145 (2008).

    Article  Google Scholar 

  • 25.

    George, R. H. Health problems and diseases of sea turtles. Biol. Sea Turt. I, 363–385 (2017).

    Google Scholar 

  • 26.

    Aguirre, A. A. & Lutz, P. L. Marine turtles as sentinels of ecosystem health: is fibropapillomatosis an indicator?. EcoHealth 1, 275–283 (2004).

    Google Scholar 

  • 27.

    Heithaus, M. R., Wirsing, A. J., Thomson, J. A. & Burkholder, D. A. A review of lethal and non-lethal effects of predators on adult marine turtles. J. Exp. Mar. Biol. Ecol. 356, 43–51 (2008).

    Article  Google Scholar 

  • 28.

    Do Sul, J. A., Santos, I. R., Friedrich, A. C., Matthiensen, A. & Fillmann, G. Plastic pollution at a sea turtle conservation area in NE Brazil: contrasting developed and undeveloped beaches. Estuar. Coasts 34, 814–823 (2011).

    Article  CAS  Google Scholar 

  • 29.

    Wilcox, C., Puckridge, M., Schuyler, Q. A., Townsend, K. & Hardesty, B. D. A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Sci. Rep. 8, 1–1 (2018).

    CAS  Article  Google Scholar 

  • 30.

    Domènech, F., Aznar, F. J., Raga, J. A. & Tomás, J. Two decades of monitoring in marine debris ingestion in loggerhead sea turtle, Caretta caretta, from the western Mediterranean. Environ. Pollut. 244, 367–378 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 31.

    Schuyler, Q. A. et al. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles. Glob. Change Biol. 22, 567–576 (2016).

    ADS  Article  Google Scholar 

  • 32.

    Lutcavage, M. E., Plotkin, P., Witherington, B., Lutz, P. L. & Musick, J. A. Human impacts on sea turtle survival. Biol. Sea Turt. I, 387–409 (1997).

    Google Scholar 

  • 33.

    Schroeder, B. A. Nesting patterns, reproductive migrations, and adult foraging areas of loggerhead turtles. Logger Sea Turtl. 40, 114–124 (2003).

    Google Scholar 

  • 34.

    Zbinden, J. A., Largiadèr, C. R., Leippert, F., Margaritoulis, D. & Arlettaz, R. High frequency of multiple paternity in the largest rookery of Mediterranean loggerhead sea turtles. Mol. Ecol. 16, 3703–3711 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Hays, G. C., Fossette, S., Katselidis, K. A., Schofield, G. & Gravenor, M. B. Breeding periodicity for male sea turtles, operational sex ratios, and implications in the face of climate change. Conserv. Biol. 24, 1636–1643 (2010).

    PubMed  Article  Google Scholar 

  • 36.

    Hays, G. C., Mazaris, A. D. & Schofield, G. Different male/female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Front. Mar. Sci. 19(1), 43 (2014).

    Google Scholar 

  • 37.

    Schofield, G. et al. Biodiversity research: fidelity to foraging sites, consistency of migration routes and habitat modulation of home range by sea turtles. Divers. Distrib. 5, 840–853 (2010).

    Article  Google Scholar 

  • 38.

    Wood, J. R. & Wood, F. E. Reproductive biology of captive green sea turtles Chelonia mydas. Am. Zool. 20, 499–505 (1980).

    Article  Google Scholar 

  • 39.

    Soares, L. S. et al. Effects of hybridization on sea turtle fitness. Conserv. Genet. 19, 1311–1322 (2018).

    Article  Google Scholar 

  • 40.

    Wood, F. G. Mating behavior of captive loggerhead turtles Caretta caretta. Copeia 1953, 184–186 (1953).

    Article  Google Scholar 

  • 41.

    Manire, C. A., Byrd, L., Therrien, C. L. & Martin, K. Mating-induced ovulation in loggerhead sea turtles Caretta caretta. Zoo Biol. 27, 213–225 (2008).

    PubMed  Article  Google Scholar 

  • 42.

    Lohmann, K. & Lohmann, C. Acquisition of magnetic directional preference in hatchling loggerhead sea turtles. J. Exp. Biol. 190, 1–8 (1994).

    CAS  PubMed  Google Scholar 

  • 43.

    Lohmann, K. J., Hester, J. T. & Lohmann, C. M. Long-distance navigation in sea turtles. Ethol. Ecol. Evol. 11, 1–23 (1999).

    Article  Google Scholar 

  • 44.

    Light, P. H., Salmon, M. I. & Lohmann, K. J. Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J. Exp. Biol. 182, 1–10 (1993).

    Google Scholar 

  • 45.

    Frick, M. G., Williams, K. L., Bolten, A. B., Bjorndal, K. A. & Martins, H. R. Foraging ecology of oceanic-stage loggerhead turtles Caretta caretta. Endanger Sp Res. 9, 91–97 (2009).

    Article  Google Scholar 

  • 46.

    Pritchard, P. C. H., Lutz, P. L. & Musick, J. A. Evolution, phylogeny and current status. Biol. Sea Turt. I, 1–28 (1997).

    Google Scholar 

  • 47.

    Wyneken, J. Sea turtle locomotion: mechanisms behavior. Biol. Sea Turt. I, 165–198 (1997).

    Google Scholar 

  • 48.

    Miller, J. D., Limpus, C. J., & Godfrey, M. H. Nest-site selection, oviposition, eggs, development, hatching, and emergence of loggerhead turtles. Logger. Sea Turtle. 12, 51–81 (2003).

  • 49.

    Tucker, A. D. Nest-site fidelity and clutch frequency of loggerhead turtles are better elucidated by satellite telemetry than by nocturnal tagging efforts: implications for stock estimation. J. Exp. Mar. Biol. Ecol. 383, 48–55 (2010).

    Article  Google Scholar 

  • 50.

    Addison, D. S. Caretta caretta (Loggerhead sea turtle) nesting frequency. Herp. Rev. 27, 76 (1996).

    Google Scholar 

  • 51.

    Ross, J. P. Hurricane effects on nesting Caretta caretta. Mar. Turt. News 108, 13–14 (2005).

    Google Scholar 

  • 52.

    Kraemer, J. E. & Bell, R. Rain-induced mortality of eggs and hatchlings of loggerhead sea turtles (Caretta caretta) on the Georgia coast. Herpetology 36, 72–77 (1980).

    Google Scholar 

  • 53.

    Van Houtan, K. S. & Bass, O. L. Stormy oceans are associated with declines in sea turtle hatching. Curr. Biol. 17, R590–R591 (2007).

    PubMed  Article  CAS  Google Scholar 

  • 54.

    Matsuzawa, Y., Sato, K., Sakamoto, W. & Bjorndal, K. Seasonal fluctuations in sand temperature: effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe Japan. Mar. Biol. 40, 639–646 (2002).

    Google Scholar 

  • 55.

    Stancyk, S. E., Talbert, O. R. & Dean, J. M. Nesting activity of the loggerhead turtle Caretta caretta in South Carolina, II. Protection of nests from raccoon predation by transplantation. Biol. Conserv. 18, 289–298 (1980).

    Article  Google Scholar 

  • 56.

    Moulis, R. A. Predation by the imported fire ant (Solenopsis invicta) on loggerhead sea turtle (Caretta caretta) nests on Wassaw National Wildlife Refuge Georgia. Chelon. Conserv. Biol. 2, 433–436 (1997).

    Google Scholar 

  • 57.

    Drennen, D., Cooley, D. & Devore, J. E. Armadillo predation on loggerhead turtle eggs at two national wildlife refuges in Florida, USA. Mar. Turt. News 45, 7–8 (1989).

    Google Scholar 

  • 58.

    Allen, C. R., Forys, E. A., Rice, K. G. & Wojcik, D. P. Effects of fire ants (Hymenoptera: Formicidae) on hatching turtles and prevalence of fire ants on sea turtle nesting beaches in Flor. Entomology 84, 250–253 (2001).

    Google Scholar 

  • 59.

    Donlan, E. M., Townsend, J. H. & Golden, E. A. Predation of Caretta caretta (Testudines: Cheloniidae) eggs by larvae of Lanelater sallei (Coleoptera: Elateridae) on Key Biscayne Florida. Carib. J. Sci. 40, 415–420 (2004).

    Google Scholar 

  • 60.

    Stewart, K. R. & Wyneken, J. Predation risk to loggerhead hatchlings at a high-density nesting beach in Southeast Florida. Bull. Mar. Sci. 74, 325–335 (2004).

    Google Scholar 

  • 61.

    Milton, S. L., Leone-Kabler, S., Schulman, A. A. & Lutz, P. L. Effects of Hurricane Andrew on the sea turtle nesting beaches of South Florida. Bull. Mar. Sci. 54, 974–981 (1994).

    Google Scholar 

  • 62.

    Lasala, J. A., Harrison, J. S., Williams, K. L. & Rostal, D. C. Strong male-biased operational sex ratio in a breeding population of loggerhead turtles (Caretta caretta) inferred by paternal genotype reconstruction analysis. Ecol. Evol. 3, 4736–4747 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Moore, M. K. & Ball, R. M. Jr. Multiple paternity in loggerhead turtle (Caretta caretta) nests on Melbourne Beach, Florida: a microsatellite analysis. Mol. Ecol. 11, 281–288 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Marco, A., Abella, E., Martins, S., López, O. & Patino-Martinez, J. Female nesting behaviour affects hatchling survival and sex ratio in the loggerhead sea turtle: implications for conservation programmes. Ethol. Ecol. Evol. 30, 141–155 (2018).

    Article  Google Scholar 

  • 65.

    Foley, A. M., Peck, S. A. & Harman, G. R. Effects of sand characteristics and inundation on the hatching success per clutch of loggerhead sea turtle (Caretta caretta) clutches on low-relief mangrove islands in southwest Florida. Chelon. Conserv. Biol. 5, 32–41 (2006).

    Article  Google Scholar 

  • 66.

    McGehee, M. A. Effects of moisture on eggs and hatchlings of loggerhead sea turtles (Caretta caretta). Herpetology 46, 251–258 (1990).

    Google Scholar 

  • 67.

    Hatase, H. & Tsukamoto, K. Smaller longer, larger shorter: energy budget calculations explain intrapopulation variation in remigration intervals for loggerhead sea turtles (Caretta caretta). Can. J. Zool. 86, 595–600 (2008).

    Article  Google Scholar 

  • 68.

    Hays, G. C. The implications of variable remigration intervals for the assessment of population size in marine turtles. J. Theor. Biol. 206, 221–227 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    National Weather Service Forecast Office Tallahassee, Florida. Tallahassee, FL (weather.gov).

  • 70.

    Margaritoulis, D. Nesting activity and reproductive output of loggerhead sea turtles, Caretta caretta, over 19 seasons (1984–2002) at Laganas Bay, Zakynthos, Greece: the largest rookery in the Mediterranean. Chelon. Conserv. Biol. 4, 916–929 (2005).

    Google Scholar 

  • 71.

    Spotila, J. R. Sea Turtles: A Complete Guide to Their Biology, Behavior, and Conservation (JHU Press, Baltimore, 2004).

    Google Scholar 

  • 72.

    Pike, D. A. Forecasting range expansion into ecological traps: climate-mediated shifts in sea turtle nesting beaches and human development. Glob. Change Biol. 10, 3082–3092 (2013).

    ADS  Article  Google Scholar 

  • 73.

    Hamann, M., Fuentes, M. M., Ban, N. C. & Mocellin, V. J. Climate change and marine turtles. Biol. Sea Turt. 51, 353 (2013).

    Google Scholar 

  • 74.

    Sydeman, W. J., Poloczanska, E., Reed, T. E. & Thompson, S. A. Climate change and marine vertebrates. Science 350, 772–777 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 75.

    Van Houtan, K. S. & Halley, J. M. Long-term climate forcing in loggerhead sea turtle nesting. PLoS ONE 6, e19043 (2011).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 76.

    Garcıía, A., Ceballos, G. & Adaya, R. Intensive beach management as an improved sea turtle conservation strategy in Mexico. Biol. Conserv. 111, 253–261 (2003).

    Article  Google Scholar 

  • 77.

    Dellert, L. J., O’Neil, D. & Cassill, D. L. Effects of beach renourishment and clutch relocation on the success of the loggerhead sea turtle (Caretta caretta) eggs and hatchlings. J. Herpetol. 48, 186–187 (2014).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

    3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration