in

Multiple social network influences can generate unexpected environmental outcomes

[adace-ad id="91168"]
  • 1.

    Amel, E., Manning, C., Scott, B. & Koger, S. Beyond the roots of human inaction: Fostering collective effort toward ecosystem conservation. Science 356, 275–279 (2017).

    Google Scholar 

  • 2.

    Bodin, Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science 357, eaan1114 (2017).

    Google Scholar 

  • 3.

    Cinner, J. E. How behavioral science can help conservation. Science 362, 889–891 (2018).

    Google Scholar 

  • 4.

    Abrahamse, W. & Steg, L. Social influence approaches to encourage resource conservation: A meta-analysis. Glob. Environ. Chang. 23, 1773–1785 (2013).

    Google Scholar 

  • 5.

    Christoff, Z., Hansen, J. U. & Proietti, C. Reflecting on social influence in networks. J. Logic Lang. Inf. 25, 299–333 (2016).

    Google Scholar 

  • 6.

    Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl. Acad. Sci. USA. 107, 5334–5338 (2010).

    Google Scholar 

  • 7.

    Friedkin, N. E. & Johnsen, E. C. Social positions in influence networks. Soc. Netw. 19, 209–222 (1997).

    Google Scholar 

  • 8.

    Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358, 2249–2258 (2008).

    Google Scholar 

  • 9.

    Barnes, M. L., Lynham, J., Kalberg, K. & Leung, P. Social networks and environmental outcomes. Proc. Natl. Acad. Sci. 113, 6466–6471 (2016).

    Google Scholar 

  • 10.

    McPherson, M., Smith-lovin, L. & Cook, J. M. Homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).

    Google Scholar 

  • 11.

    Bodin, Ö., Mancilla García, M. & Robins, G. Reconciling conflict and cooperation in environmental governance: A social network perspective. Annu. Rev. Environ. Resour. 45, 471–495 (2020).

    Google Scholar 

  • 12.

    Bodin, Ö. & Prell, C. Social Networks and Natural Resource. Management Uncovering the Social Fabric of Environmental Governance (Cambridge University Press, 2011).

    Google Scholar 

  • 13.

    Small, B., Brown, P. & Montes de Oca Munguia, O. Values, trust, and management in New Zealand agriculture. Int. J. Agric. Sustain. 14, 282–306 (2016).

    Google Scholar 

  • 14.

    Friedman, R. S. et al. Beyond the community in participatory forest management: A governance network perspective. Land Use Policy 97, 104738 (2020).

    Google Scholar 

  • 15.

    Schill, C. et al. A more dynamic understanding of human behaviour for the Anthropocene. Nat. Sustain. 2, 1075–1082 (2019).

    Google Scholar 

  • 16.

    Yletyinen, J., Hentati-Sundberg, J., Blenckner, T. & Bodin, O. Fishing strategy diversification and fishers’ ecological dependency. Ecol. Soc. 23, 28 (2018).

    Google Scholar 

  • 17.

    Grêt-Regamey, A., Huber, S. H. & Huber, R. Actors’ diversity and the resilience of social-ecological systems to global change. Nat. Sustain. 2, 290–297 (2019).

    Google Scholar 

  • 18.

    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).

    Google Scholar 

  • 19.

    de Lange, E., Milner-Gulland, E. J. & Keane, A. Improving environmental interventions by understanding information flows. Trends Ecol. Evol. 34, 1034–1047 (2019).

    Google Scholar 

  • 20.

    Vainio, A., Paloniemi, R. & Hujala, T. How are forest owners’ objectives and social networks related to successful conservation?. J. Rural Stud. 62, 21–28 (2018).

    Google Scholar 

  • 21.

    de Snoo, G. R. et al. Toward effective nature conservation on farmland: Making farmers matter. Conserv. Lett. 6, 66–72 (2013).

    Google Scholar 

  • 22.

    Hanski, I. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40, 248–255 (2011).

    Google Scholar 

  • 23.

    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909–914 (2018).

    Google Scholar 

  • 24.

    Hill, R. et al. A social-ecological systems analysis of impediments to delivery of the Aichi 2020 Targets and potentially more effective pathways to the conservation of biodiversity. Glob. Environ. Chang. 34, 22–34 (2015).

    Google Scholar 

  • 25.

    Bengtsson, J. et al. Reserves, resilience and dynamic landscapes. AMBIO J. Hum. Environ. 32, 389–396 (2016).

    Google Scholar 

  • 26.

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    Google Scholar 

  • 27.

    Miller, B. W., Caplow, S. C. & Leslie, P. W. Feedbacks between conservation and social-ecological systems. Conserv. Biol. 26, 218–227 (2012).

    Google Scholar 

  • 28.

    Larrosa, C., Carrasco, L. R. & Milner-Gulland, E. J. Unintended feedbacks: Challenges and opportunities for improving conservation effectiveness. Conserv. Lett. 9, 316–326 (2016).

    Google Scholar 

  • 29.

    Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).

    Google Scholar 

  • 30.

    Brehony, P., Tyrrell, P., Kamanga, J., Waruingi, L. & Kaelo, D. Incorporating social-ecological complexities into conservation policy. Biol. Conserv. 248, 108697 (2020).

    Google Scholar 

  • 31.

    Jacob, U. et al. Marine conservation: Towards a multi-layered network approach. Philos. Trans. R. Soc. B. Biol. Sci. 375, 20190459 (2020).

    Google Scholar 

  • 32.

    Hoole, A. & Berkes, F. Breaking down fences: Recoupling social-ecological systems for biodiversity conservation in Namibia. Geoforum 41, 304–317 (2010).

    Google Scholar 

  • 33.

    Dajka, J. et al. Red and green loops help uncover missing feedbacks in a coral reef social–ecological system. People Nat. 2, 608–618 (2020).

    Google Scholar 

  • 34.

    Yletyinen, J. et al. Understanding and managing social-ecological tipping points in primary industries. Bioscience 69, 335–347 (2019).

    Google Scholar 

  • 35.

    Mason, W. A., Conrey, F. R. & Smith, E. R. Situating social influence processes: Dynamic, multidirectional flows of influence within social networks. Personal. Soc. Psychol. Rev. 11, 279–300 (2007).

    Google Scholar 

  • 36.

    Niemiec, R. M., Willer, R., Ardoin, N. M. & Brewer, F. K. Motivating landowners to recruit neighbors for private land conservation. Conserv. Biol. 33, 930–941 (2019). 

    Google Scholar 

  • 37.

    Brown, P. Survey of rural decision makers. Manaaki Whenua Landcare Res. https://doi.org/10.7931/J2736P2D (2015).

    Google Scholar 

  • 38.

    Burt, R. S. & Doreian, P. Testing a structural model of perception: Conformity and deviance with respect to Journal norms in elite sociological methodology. Qual. Quant. 16, 109–150 (1982).

    Google Scholar 

  • 39.

    Zhang, B., Pavlou, P. A. & Krishnan, R. On direct vs. indirect peer influence in large social networks. Inf. Syst. Res. 29, 292–314 (2018).

    Google Scholar 

  • 40.

    Pinheiro, F. L., Santos, M. D., Santos, F. C. & Pacheco, J. M. Origin of peer influence in social networks. Phys. Rev. Lett. 112, 1–5 (2014).

    Google Scholar 

  • 41.

    Lewis, K., Gonzalez, M. & Kaufman, J. Social selection and peer influence in an online social network. Proc. Natl. Acad. Sci. 109, 68–72 (2012).

    Google Scholar 

  • 42.

    Stein, C., Barron, J. & Ernstson, H. A social network approach to analyze multi-stakeholders governance arrangement in water resources management: Three case studies from catchments in Burkina Faso, Tanzania and Zambia. In Proceedings of the XIVth World Water Congress, 25–29 September, at Porto de Galinhas, Pernambuco, Brazil. (2011).

  • 43.

    Autant-bernard, C., Mairesse, J. & Massard, N. Spatial knowledge diffusion through collaborative networks. Pap. Reg. Sci. 86, 341–350 (2007).

    Google Scholar 

  • 44.

    Ward, P. S. & Pede, V. O. Capturing social network effects in technology adoption: The spatial diffusion of hybrid rice in Bangladesh. Aust. J. Agric. Resour. Econ. 59, 225–241 (2015).

    Google Scholar 

  • 45.

    Kuhfuss, L. et al. Nudges, social norms, and permanence in agri-environmental schemes. Land Econ. 92, 641–655 (2016).

    Google Scholar 

  • 46.

    Fehr, E. & Schurtenberger, I. Normative foundations of human cooperation. Nat. Hum. Behav. 2, 458–468 (2018).

    Google Scholar 

  • 47.

    Delaroche, M. Adoption of conservation practices: What have we learned from two decades of social-psychological approaches?. Curr. Opin. Environ. Sustain. 45, 25–35 (2020).

    Google Scholar 

  • 48.

    Knowler, D. & Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 32, 25–48 (2007).

    Google Scholar 

  • 49.

    O’Sullivan, D. & Perry, G. L. W. Spatial Simulation. Exploring Pattern and Process (Wiley, 2013).

    Google Scholar 

  • 50.

    Will, M., Groeneveld, J., Frank, K. & Müller, B. Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review. Socio-Environ. Syst. Model. 2, 16325 (2020).

    Google Scholar 

  • 51.

    Bodin, Ö. & Crona, B. I. The role of social networks in natural resource governance: What relational patterns make a difference?. Glob. Environ. Chang. 19, 366–374 (2009).

    Google Scholar 

  • 52.

    Erdős, P. & Rényi, A. On random graphs. Publ. Math. 6, 290–297 (1959).

    Google Scholar 

  • 53.

    Hanski, I. Dynamics of regional distribution: The core and satellite species hypothesis. Oikos 38, 210–221 (1982).

    Google Scholar 

  • 54.

    Groce, J. E., Farrelly, M. A., Jorgensen, B. S. & Cook, C. N. Using social-network research to improve outcomes in natural resource management. Conserv. Biol. 33, 53-65 (2018).

    Google Scholar 

  • 55.

    Schill, C., Wijermans, N., Schlüter, M. & Lindahl, T. Cooperation is not enough – Exploring social-ecological micro-foundations for sustainable common-pool resource use. PLoS ONE 11, e0165009 (2016).

    Google Scholar 

  • 56.

    Valente, T. W. Network interventions. Science 337, 49–53 (2012).

    Google Scholar 

  • 57.

    Valente, T. W. Putting the network in network interventions. Proc. Natl. Acad. Sci. USA. 114, 9500–9501 (2017).

    Google Scholar 

  • 58.

    Kossinets, G. & Watts, D. J. Empirical analysis of an evolving social network. Science 311, 88–90 (2006).

    Google Scholar 

  • 59.

    De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015).

    Google Scholar 

  • 60.

    Prell, C. Social Network Analysis (SAGE publications Ltd, 2012).

    Google Scholar 

  • 61.

    Thampi, V. A., Anand, M. & Bauch, C. T. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation. Sci. Rep. 8, 2597 (2018).

    Google Scholar 

  • 62.

    Dannenberg, A. & Barrett, S. Cooperating to avoid catastrophe. Nat. Hum. Behav. 2, 435–437 (2018).

    Google Scholar 

  • 63.

    Rasoulkhani, K., Logasa, B., Reyes, M. P. & Mostafavi, A. Understanding fundamental phenomena affecting the water conservation technology adoption of residential consumers using agent-based modeling. Water 10, 993 (2018).

    Google Scholar 

  • 64.

    Wang, P., Robins, G., Pattison, P. & Lazega, E. Exponential random graph models for multilevel networks. Soc. Netw. 35, 96–115 (2013).

    Google Scholar 

  • 65.

    Kivelä, M. et al. Multilayer networks. J. Complex Networks 2, 203–271 (2014).

    Google Scholar 

  • 66.

    Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2011).

    Google Scholar 

  • 67.

    May, R. M., Levin, S. A. & Sugihara, G. Complex systems: Ecology for bankers. Nature 451, 893–895 (2008).

    Google Scholar 

  • 68.

    Grimm, V. et al. The ODD protocol for describing agent-based models: a second update to improve clarity, replication and structural realism. J. Artif. Soc. Soc. Simul. 23(2), 7 (2020).

    Google Scholar 

  • 69.

    Alexander, S. M., Bodin, Ö. & Barnes, M. L. Untangling the drivers of community cohesion in small-scale fisheries. Int. J. Commons 12, 519–547 (2018).

    Google Scholar 

  • 70.

    QE II National Trust. QE II National Trust. Ngā Kiarauhi Papa|Forever protected. https://qeiinationaltrust.org.nz.

  • 71.

    Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).

    Google Scholar 

  • 72.

    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).

    Google Scholar 

  • 73.

    Aral, S., Muchnik, L. & Sundararajan, A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl. Acad. Sci. US. A. 106, 21544–21549 (2009).

    Google Scholar 

  • 74.

    Stefano, A. D. et al. Quantifying the role of homophily in human cooperation using multiplex evolutionary game theory. PLoS ONE 10, e0140646 (2015).

    Google Scholar 

  • 75.

    Wilensky, U. NetLogo. http://ccl.northwestern.edu/netlogo/. (Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 1999).

  • 76.

    Thiele, J. C. R Marries NetLogo: Introduction to the RNetLogo Package. J. Stat. Softw. 58, 1–41 (2014).

    Google Scholar 

  • 77.

    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, 2018).

  • 78.

    Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. J. Stat. Softw. Code Snippets 28, 1–9 (2008).

    Google Scholar 

  • 79.

    Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1. (2016).

  • 80.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. Interjournal Complex Syst. 1695, 1–9 (2006).

    Google Scholar 


  • Source: Ecology - nature.com

    How trees and forests reduce risks from climate change

    Ekotrope makes building energy-efficient homes easier