in

Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development

  • 1.

    Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–55.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Tewksbury JJ, Anderson JGT, Bakker JD, Billo TJ, Dunwiddie PW, Groom MJ, et al. Natural history’s place in science and society. Bioscience. 2014;64:300–10.

    Article 

    Google Scholar 

  • 3.

    Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, et al. DNA-based species delimitation in algae. Eur J Phycol. 2014;49:179–96.

    Article 

    Google Scholar 

  • 4.

    Potter D, LaJeunesse TC, Saunders GW, Anderson RA. Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. Biodivers Conserv. 1997;6:99–107.

    Article 

    Google Scholar 

  • 5.

    de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA. 1999;96:2864–8.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    John U, Litaker RW, Montresor M, Murray S, Brosnahan ML, Anderson DM. Formal revision of the alexandrium tamarense species complex (dinophyceae) taxonomy: the introduction of five species with emphasis on molecular-based (rDNA) classification. Protist. 2014;165:779–804.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Hoppenrath M, Reñé A, Satta CT, Yamaguchi A, Leander BS. Morphology and molecular phylogeny of a new marine, sand-dwelling dinoflagellate genus, Pachena (Dinophyceae), with descriptions of three new species. J Phycol. 2020;56:798–817.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Sproles AE, Oakley CA, Krueger T, Grossman AR, Weis VM, Meibom A, et al. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ Microbiol. 2020;22:3741–53.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Hume BCC, Mejia-Restrepo A, Voolstra CR, Berumen ML. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs. 2020;39:583–601.

    Article 

    Google Scholar 

  • 10.

    Gabay Y, Parkinson JE, Wilkinson SP, Weis VM, Davy SK. Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME J. 2019;13:2489–99.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Tivey TR, Parkinson JE, Weis VM. Host and symbiont cell cycle coordination is mediated by symbiotic state, nutrition, and partner identity in a model cnidarian-dinoflagellate symbiosis. MBio. 2020;11:1–17.

    Article 

    Google Scholar 

  • 12.

    Lawson CA, Possell M, Seymour JR, Raina JB, Suggett DJ. Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Sci Rep. 2019;9:1–11.

    Google Scholar 

  • 13.

    Reich HG, Rodriguez IB, LaJeunesse TC, Ho TY. Endosymbiotic dinoflagellates pump iron: differences in iron and other trace metal needs among the Symbiodiniaceae. Coral Reefs. 2020;39:915–27.

    Article 

    Google Scholar 

  • 14.

    de Queiroz A, Gatesy J. The supermatrix approach to systematics. Trends Ecol Evol. 2007;22:34–41.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    de Queiroz K. Species concepts and species delimitation. Syst Biol. 2007;56:879–86.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Schönrogge K, Barr B, Wardlaw JC, Napper E, Gardner MG, Breen J, et al. When rare species become endangered: Cryptic speciation in myrmecophilous hoverflies. Biol J Linn Soc. 2002;75:291–300.

    Article 

    Google Scholar 

  • 17.

    Pettay DT, Wham DC, Pinzón JH, LaJeunesse TC. Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol. 2011;20:5197–212.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Baums IB, Devlin-Durante MK, LaJeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Pinzón JH, LaJeunesse TC. Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol. 2011;20:311–25.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 20.

    Sampayo EM, Dove S, LaJeunesse TC. Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol. 2009;18:500–19.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Lien AY, Fukami H, Yamashita Y, Lien Y, Fukami H, Yamashita Y. Symbiodinium Clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan. Zool Sci. 2012;29:173–80.

    Article 

    Google Scholar 

  • 22.

    LaJeunesse TC. ‘Species’ radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol. 2005;22:570–81.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Wham DC, Carmichael M, LaJeunesse TC. Microsatellite loci for Symbiodinium goreaui and other Clade C Symbiodinium. Conserv Genet Resour. 2014;6:127–9.

    Article 

    Google Scholar 

  • 24.

    LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Borwn B, Obura DO, et al. Long standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr. 2010;11:674–5.

    Google Scholar 

  • 25.

    Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser. 2004;284:147–61.

    Article 

    Google Scholar 

  • 27.

    Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, et al. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J Exp Mar Bio Ecol. 2009;373:102–10.

    Article 

    Google Scholar 

  • 28.

    Hume B, D’Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: Prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull. 2013;72:313–22.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Hoadley KD, Lewis AM, Wham DC, Pettay DT, Grasso C, Smith R, et al. Host – symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep. 2019:9:1–15.

  • 30.

    Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA. 2008;105:10444–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Lee SY, Jeong HJ, LaJeunesse TC. Cladocopium infistulum sp. nov. (Dinophyceae), a thermally tolerant dinoflagellate symbiotic with giant clams from the western Pacific Ocean. Phycologia. 2020;59:515–26.

    Article 

    Google Scholar 

  • 32.

    LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA. Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia. 2014;53:305–19.

    Article 

    Google Scholar 

  • 33.

    Lewis AM, Chan AN, LaJeunesse TC. New species of closely related endosymbiotic dinoflagellates in the greater caribbean have niches corresponding to host coral phylogeny. J Eukaryot Microbiol. 2019;66:469–82.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Veron JEN. Corals of the world. In: Stafford-Smith M, editor. Australian Institute of Marine Science; Townsville, Australia, 2000.

  • 35.

    Richmond RH. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol. 1987;93:527–33.

    Article 

    Google Scholar 

  • 36.

    Harrison PL, Wallace CC. A review of reproduction, larval dispersal and settlement of scleractinian corals. In: Dubinsky Z, editor. Ecosystems of the World 25 Coral Reefs; New York, NY, USA, 1990. p. 133–96

  • 37.

    Glynn PW. Coral reef bleaching: ecological perspectives. Coral Reefs. 1993;12:1–17.

    Article 

    Google Scholar 

  • 38.

    LaJeunesse TC, Smith R, Walther M, Pinzon J, Pettay DT, McGinley M, et al. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc B Biol Sci. 2010;277:2925–34.

    Article 

    Google Scholar 

  • 39.

    Stella JS, Pratchett MS, Hutchings PA, Jones GP. Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Annu Rev. 2011;49:43–104.

    Google Scholar 

  • 40.

    Austin AD, Austin SA, Sale PF. Community structure of the fauna associated with the coral Pocillopora damicornis (L.) on the Great Barrier Reef. Mar Freshw Res. 1980;31:163–74.

    Article 

    Google Scholar 

  • 41.

    Glynn PW, Maté JL, Baker AC. Coral bleaching and mortality in Panama and Ecuador during the 1997 – 1998 El Niño – southern oscillation event: spatial/temporal patterns and comparisons with the 1982 – 1983 event. Bull Mar Sci. 2001;69:79–109.

    Google Scholar 

  • 42.

    Johnston EC, Forsman ZH, Flot J, Schmidt-Roach S, Pinzón H, Knapp ISS, et al. A genomic glance through the fog of plasticity and diversification in Pocillopora. Sci Rep. 2017;7:5991.

  • 43.

    Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc B Biol Sci. 2004;271:1757–63.

    CAS 
    Article 

    Google Scholar 

  • 44.

    Bahr KD, Tran T, Jury CP, Toonen RJ. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS ONE. 2020;15:1–13.

    Article 
    CAS 

    Google Scholar 

  • 45.

    Flot JF, Tillier S. The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: The putative D-loop and a novel ORF of unknown function. Gene. 2007;401:80–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    LaJeunesse TC, Loh WKW, Van Woesik R, Schmidt GW, Fitt WK. Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr. 2003;48:2046–54.

    Article 

    Google Scholar 

  • 47.

    Tonk L, Sampayo EM, LaJeunesse TC, Schrameyer V, Hoegh-Guldberg O. Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef. J Phycol. 2014;50:552–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Magalon H, Baudry E, Husté A, Adjeroud M, Veuille M. High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific. Mar Biol. 2006;148:913–22.

    Article 

    Google Scholar 

  • 49.

    Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR, et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr. 2013;40:1595–608.

    Article 

    Google Scholar 

  • 50.

    Silverstein RN, Correa AMS, LaJeunesse TC, Baker AC. Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Mar Ecol Prog Ser. 2011;422:63–75.

    Article 

    Google Scholar 

  • 51.

    Wham DC, LaJeunesse TC. Symbiodinium population genetics: testing for species boundaries and analysing samples with mixed genotypes. Mol Ecol. 2016;25:2699–712.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Baums IB, Devlin-durante M, Laing BAA, Feingold J, Smith T, Bruckner A, et al. Marginal coral populations: the densest known aggregation of Pocillopora in the Galápagos Archipelago is of asexual origin. Front Mar Sci. 2014;1:1–11.

    Article 

    Google Scholar 

  • 53.

    McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME. Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser. 2012;462:1–7.

    Article 

    Google Scholar 

  • 54.

    Camp EF, Nitschke MR, Rodolfo-metalpa R, Gardner SG, Smith DJ, Zampighi M, et al. Reef-building corals thrive within hot-acidic and deoxygenated waters. Sci Rep. 2017;7:2434.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    LaJeunesse TC, Trench RK. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull. 2000;199:126–34.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    LaJeunesse TC. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: In search of a “species” level marker. J Phycol. 2001;880:866–80.

    Article 

    Google Scholar 

  • 57.

    Moore RB, Ferguson KM, Loh WKW, Hoegh-Guldberg O, Carter DA. Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. Int J Syst Evol Microbiol. 2003;53:1725–34.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    LaJeunesse TC, Thornhill DJ. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE. 2011;6:e29013.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Swofford D. PAUP 4.0: Phylogenetic analysis using parsimony. Washington DC, USA: Smithson Inst.; 2014.

  • 60.

    Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Nylander JAA. MrModeltest v2. Uppsala, Sweden: Progr Distrib by author Evol Biol Centre, Uppsala Univ.; 2004.

  • 62.

    Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:1–6.

    Article 
    CAS 

    Google Scholar 

  • 63.

    Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol. 2018;67:901–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Jackson JBC, O’Dea A. Timing of the oceanographic and biological isolation of the Caribbean sea from the tropical eastern pacific ocean. Bull Mar Sci. 2013;89:779–800.

    Google Scholar 

  • 65.

    Haug G, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature. 1998;394:1699–701.

    Google Scholar 

  • 66.

    O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, et al. Formation of the Isthmus of Panama. Sci Adv. 2016;2:1–12.

    Article 

    Google Scholar 

  • 67.

    Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Bouckaert R, Heled J DensiTree 2: seeing trees through the forest. 2014. https://www.biorxiv.org/content/10.1101/012401v1.

  • 69.

    Bay LK, Howells EJ, van Oppen MJH. Isolation, characterisation and cross amplification of thirteen microsatellite loci for coral endo-symbiotic dinoflagellates (Symbiodinium clade C). Conserv Genet Resour. 2009;1:199–203.

    Article 

    Google Scholar 

  • 70.

    Peakall R, Smouse PE. GenALEx 6.5: genetic analysis in excel. population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Davies SW, Moreland KN, Wham DC, Kanke MR, Matz MV. Cladocopium community divergence in two Acropora coral hosts across multiple spatial scales. Mol Ecol. 2020;29:4559–72.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–61.

    Article 

    Google Scholar 

  • 73.

    Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol. 2018;1:95.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity. 1995:248–9.

  • 75.

    Rousset F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour. 2008;86:103–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.

    Google Scholar 

  • 78.

    LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol. 2018;28:2570–2580.e6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    LaJeunesse TC, Bonilla HR, Warner ME, Wills M, Schmidt GW, Fitt WK. Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr. 2008;53:719–27.

    Article 

    Google Scholar 

  • 80.

    Ramsby BD, Hill MS, Thornhill DJ, Steenhuizen SF, Achlatis M, Lewis AM, et al. Sibling species of mutualistic Symbiodinium Clade G from bioeroding sponges in the western Pacific and western Atlantic oceans. J Phycol. 2017;53:951–60.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Prada C, McIlroy SE, Beltrán DM, Valint DJ, Ford SA, Hellberg ME, et al. Cryptic diversity hides host and habitat specialization in a gorgonian-algal symbiosis. Mol Ecol. 2014;23:3330–40.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Wham DC, Ning G, LaJeunesse TC. Symbiodinium glynnii sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean. Phycologia. 2017;56:396–409.

    CAS 
    Article 

    Google Scholar 

  • 83.

    Mayr E. The growth of biological thought: Diversity, evolution, and inheritance. Cambridge, MA, USA: Belknap Press of Harvard University Press; 1982.

  • 84.

    Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA. Standardizing methods to address clonality in population studies. Mol Ecol. 2007;16:5115–39.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Jeong HJ, Lee SY, Kang NS, Yoo YD, Lim AS, Lee MJ, et al. Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (dinophyceae) as the sole representative of Symbiodinium Clade E. J Eukaryot Microbiol. 2014;61:75–94.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Blank RJ, Trench RK. Speciation and symbiotic dinoflagellates. Science. 1985;229:656–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Suggett DJ, Moore CM, Hickman AE, Geider RJ. Interpretation of fast repetition rate (FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser. 2009;376:1–19.

    Article 

    Google Scholar 

  • 88.

    Suggett DJ, Goyen S, Evenhuis C, Szabó M, Pettay DT, Warner ME, et al. Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. New Phytol. 2015;208:370–81.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Geider R, Piatt T, Raven J. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar Ecol Prog Ser. 1986;30:93–104.

    CAS 
    Article 

    Google Scholar 

  • 90.

    Finkel ZV. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr. 2001;46:86–94.

    CAS 
    Article 

    Google Scholar 

  • 91.

    Irwin AJ, Finkel ZV, Schofield OME, Falkowski PG. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J Plankton Res. 2006;28:459–71.

    Article 

    Google Scholar 

  • 92.

    Wu Y, Campbell DA, Irwin AJ, Suggett DJ, Finkel ZV. Ocean acidification enhances the growth rate of larger diatoms. Limnol Oceanogr. 2014;59:1027–34.

    CAS 
    Article 

    Google Scholar 

  • 93.

    Rowan R. Coral bleaching: thermal adaptation in reef coral symbionts. Nature. 2004;430:742.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Berkelmans R, Van, Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B Biol Sci. 2006;273:2305–12.

    Article 

    Google Scholar 

  • 95.

    Abrego D, Ulstrup KE, Willis BL, Van Oppen MJH. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B Biol Sci. 2008;275:2273–82.

    CAS 
    Article 

    Google Scholar 

  • 96.

    Schluter D. Evidence for ecological speciation and its alternative. Science. 2009;323:737–41.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Hendry AP, Nosil P, Rieseberg LH. The speed of ecological speciation. Funct Ecol. 2007;21:455–64.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Glynn PW, Gassman NJ, Eakin CM, Cortes J, Smith DB, Guzman HM. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). Mar Biol. 1991;109:355–68.

    Article 

    Google Scholar 

  • 99.

    Hirose M, Kinzie RA, Hidaka M. Early development of zooxanthella-containing eggs of the corals Pocillopora verrucosa and P. eydouxi with special reference to the distribution of zooxanthellae. Biol Bull. 2000;199:68–75.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Chavez-Romo H. Sexual reproduction of the coral Pocillopora damicornis in the southern Gulf of California. Mex Cienc Mar. 2007;33:495–501.

    Article 

    Google Scholar 

  • 101.

    Russell SL, Chappell L, Sullivan W. A symbiont’s guide to the germline. 1st ed. In: Current topics in developmental biology. Vol 135. Amsterdam, The Netherlands: Elsevier Inc.; 2019. p. 351.

  • 102.

    LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW. High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs. 2004;23:596–603.

    Google Scholar 

  • 103.

    Rowan ROB, Powers DA. A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science. 1991;251:1348–51.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 104.

    Zachos JC, Dickens GR, Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008;451:279–83.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    LaJeunesse TC, Parkinson JE, Reimer JD. A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol. 2012;48:1380–91.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 106.

    Pettay DT, LaJeunesse TC. Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS ONE. 2013;8:1–12.

    Article 
    CAS 

    Google Scholar 

  • 107.

    Wicks LC, Sampayo E, Gardner JPA, Davy SK. Local endemicity and high diversity characterise high-latitude coral- Symbiodinium partnerships. Coral Reefs. 2010;29:989–1003.

    Article 

    Google Scholar 

  • 108.

    Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S. Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol. 2007;16:3721–33.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 109.

    Thompson JN. The geographic mosaic of coevolution. Chicago, IL, USA: University of Chicago Press; 2005.

  • 110.

    Sampayo EM, Ridgway T, Franceschinis L, Roff G, Hoegh-Guldberg O, Dove S. Coral symbioses under prolonged environmental change: living near tolerance range limits. Sci Rep. 2016;6:36271.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Janis CM. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst. 1993;24:467–500.

    Article 

    Google Scholar 

  • 112.

    Willeit M, Ganopolski A, Calov R, Brovkin V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci Adv. 2019;5:eaav7337.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. Mechanisms of reef coral resistance to future climate change. Science. 2014;344:895–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 114.

    Pandolfi JM, Jackson JBC, Geister J. Geologically sudden extinction of two widespread late Pleistocene Caribbean reef corals. In: Evolutionary patterns: growth, form and tempo in the fossil record. Chicago, IL, USA: University of Chicago Press; 2001. p. 120–58.

  • 115.

    Toth LT, Aronson RB, Cobb KM, Cheng H, Edwards RL, Grothe PR, et al. Climatic and biotic thresholds of coral-reef shutdown. Nat Clim Chang. 2015;5:369–74.

    Article 

    Google Scholar 

  • 116.

    Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol Appl. 2019;29:1–23.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture