Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–55.
Google Scholar
Tewksbury JJ, Anderson JGT, Bakker JD, Billo TJ, Dunwiddie PW, Groom MJ, et al. Natural history’s place in science and society. Bioscience. 2014;64:300–10.
Google Scholar
Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, et al. DNA-based species delimitation in algae. Eur J Phycol. 2014;49:179–96.
Google Scholar
Potter D, LaJeunesse TC, Saunders GW, Anderson RA. Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. Biodivers Conserv. 1997;6:99–107.
Google Scholar
de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA. 1999;96:2864–8.
Google Scholar
John U, Litaker RW, Montresor M, Murray S, Brosnahan ML, Anderson DM. Formal revision of the alexandrium tamarense species complex (dinophyceae) taxonomy: the introduction of five species with emphasis on molecular-based (rDNA) classification. Protist. 2014;165:779–804.
Google Scholar
Hoppenrath M, Reñé A, Satta CT, Yamaguchi A, Leander BS. Morphology and molecular phylogeny of a new marine, sand-dwelling dinoflagellate genus, Pachena (Dinophyceae), with descriptions of three new species. J Phycol. 2020;56:798–817.
Google Scholar
Sproles AE, Oakley CA, Krueger T, Grossman AR, Weis VM, Meibom A, et al. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ Microbiol. 2020;22:3741–53.
Google Scholar
Hume BCC, Mejia-Restrepo A, Voolstra CR, Berumen ML. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs. 2020;39:583–601.
Google Scholar
Gabay Y, Parkinson JE, Wilkinson SP, Weis VM, Davy SK. Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME J. 2019;13:2489–99.
Google Scholar
Tivey TR, Parkinson JE, Weis VM. Host and symbiont cell cycle coordination is mediated by symbiotic state, nutrition, and partner identity in a model cnidarian-dinoflagellate symbiosis. MBio. 2020;11:1–17.
Google Scholar
Lawson CA, Possell M, Seymour JR, Raina JB, Suggett DJ. Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Sci Rep. 2019;9:1–11.
Reich HG, Rodriguez IB, LaJeunesse TC, Ho TY. Endosymbiotic dinoflagellates pump iron: differences in iron and other trace metal needs among the Symbiodiniaceae. Coral Reefs. 2020;39:915–27.
Google Scholar
de Queiroz A, Gatesy J. The supermatrix approach to systematics. Trends Ecol Evol. 2007;22:34–41.
Google Scholar
de Queiroz K. Species concepts and species delimitation. Syst Biol. 2007;56:879–86.
Google Scholar
Schönrogge K, Barr B, Wardlaw JC, Napper E, Gardner MG, Breen J, et al. When rare species become endangered: Cryptic speciation in myrmecophilous hoverflies. Biol J Linn Soc. 2002;75:291–300.
Google Scholar
Pettay DT, Wham DC, Pinzón JH, LaJeunesse TC. Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol. 2011;20:5197–212.
Google Scholar
Baums IB, Devlin-Durante MK, LaJeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.
Google Scholar
Pinzón JH, LaJeunesse TC. Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol. 2011;20:311–25.
Google Scholar
Sampayo EM, Dove S, LaJeunesse TC. Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol. 2009;18:500–19.
Google Scholar
Lien AY, Fukami H, Yamashita Y, Lien Y, Fukami H, Yamashita Y. Symbiodinium Clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan. Zool Sci. 2012;29:173–80.
Google Scholar
LaJeunesse TC. ‘Species’ radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol. 2005;22:570–81.
Google Scholar
Wham DC, Carmichael M, LaJeunesse TC. Microsatellite loci for Symbiodinium goreaui and other Clade C Symbiodinium. Conserv Genet Resour. 2014;6:127–9.
Google Scholar
LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Borwn B, Obura DO, et al. Long standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr. 2010;11:674–5.
Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67.
Google Scholar
LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser. 2004;284:147–61.
Google Scholar
Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, et al. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J Exp Mar Bio Ecol. 2009;373:102–10.
Google Scholar
Hume B, D’Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: Prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull. 2013;72:313–22.
Google Scholar
Hoadley KD, Lewis AM, Wham DC, Pettay DT, Grasso C, Smith R, et al. Host – symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep. 2019:9:1–15.
Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA. 2008;105:10444–9.
Google Scholar
Lee SY, Jeong HJ, LaJeunesse TC. Cladocopium infistulum sp. nov. (Dinophyceae), a thermally tolerant dinoflagellate symbiotic with giant clams from the western Pacific Ocean. Phycologia. 2020;59:515–26.
Google Scholar
LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA. Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia. 2014;53:305–19.
Google Scholar
Lewis AM, Chan AN, LaJeunesse TC. New species of closely related endosymbiotic dinoflagellates in the greater caribbean have niches corresponding to host coral phylogeny. J Eukaryot Microbiol. 2019;66:469–82.
Google Scholar
Veron JEN. Corals of the world. In: Stafford-Smith M, editor. Australian Institute of Marine Science; Townsville, Australia, 2000.
Richmond RH. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol. 1987;93:527–33.
Google Scholar
Harrison PL, Wallace CC. A review of reproduction, larval dispersal and settlement of scleractinian corals. In: Dubinsky Z, editor. Ecosystems of the World 25 Coral Reefs; New York, NY, USA, 1990. p. 133–96
Glynn PW. Coral reef bleaching: ecological perspectives. Coral Reefs. 1993;12:1–17.
Google Scholar
LaJeunesse TC, Smith R, Walther M, Pinzon J, Pettay DT, McGinley M, et al. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc B Biol Sci. 2010;277:2925–34.
Google Scholar
Stella JS, Pratchett MS, Hutchings PA, Jones GP. Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Annu Rev. 2011;49:43–104.
Austin AD, Austin SA, Sale PF. Community structure of the fauna associated with the coral Pocillopora damicornis (L.) on the Great Barrier Reef. Mar Freshw Res. 1980;31:163–74.
Google Scholar
Glynn PW, Maté JL, Baker AC. Coral bleaching and mortality in Panama and Ecuador during the 1997 – 1998 El Niño – southern oscillation event: spatial/temporal patterns and comparisons with the 1982 – 1983 event. Bull Mar Sci. 2001;69:79–109.
Johnston EC, Forsman ZH, Flot J, Schmidt-Roach S, Pinzón H, Knapp ISS, et al. A genomic glance through the fog of plasticity and diversification in Pocillopora. Sci Rep. 2017;7:5991.
Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc B Biol Sci. 2004;271:1757–63.
Google Scholar
Bahr KD, Tran T, Jury CP, Toonen RJ. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS ONE. 2020;15:1–13.
Google Scholar
Flot JF, Tillier S. The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: The putative D-loop and a novel ORF of unknown function. Gene. 2007;401:80–7.
Google Scholar
LaJeunesse TC, Loh WKW, Van Woesik R, Schmidt GW, Fitt WK. Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr. 2003;48:2046–54.
Google Scholar
Tonk L, Sampayo EM, LaJeunesse TC, Schrameyer V, Hoegh-Guldberg O. Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef. J Phycol. 2014;50:552–63.
Google Scholar
Magalon H, Baudry E, Husté A, Adjeroud M, Veuille M. High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific. Mar Biol. 2006;148:913–22.
Google Scholar
Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR, et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr. 2013;40:1595–608.
Google Scholar
Silverstein RN, Correa AMS, LaJeunesse TC, Baker AC. Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Mar Ecol Prog Ser. 2011;422:63–75.
Google Scholar
Wham DC, LaJeunesse TC. Symbiodinium population genetics: testing for species boundaries and analysing samples with mixed genotypes. Mol Ecol. 2016;25:2699–712.
Google Scholar
Baums IB, Devlin-durante M, Laing BAA, Feingold J, Smith T, Bruckner A, et al. Marginal coral populations: the densest known aggregation of Pocillopora in the Galápagos Archipelago is of asexual origin. Front Mar Sci. 2014;1:1–11.
Google Scholar
McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME. Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser. 2012;462:1–7.
Google Scholar
Camp EF, Nitschke MR, Rodolfo-metalpa R, Gardner SG, Smith DJ, Zampighi M, et al. Reef-building corals thrive within hot-acidic and deoxygenated waters. Sci Rep. 2017;7:2434.
Google Scholar
LaJeunesse TC, Trench RK. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull. 2000;199:126–34.
Google Scholar
LaJeunesse TC. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: In search of a “species” level marker. J Phycol. 2001;880:866–80.
Google Scholar
Moore RB, Ferguson KM, Loh WKW, Hoegh-Guldberg O, Carter DA. Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. Int J Syst Evol Microbiol. 2003;53:1725–34.
Google Scholar
LaJeunesse TC, Thornhill DJ. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE. 2011;6:e29013.
Google Scholar
Swofford D. PAUP 4.0: Phylogenetic analysis using parsimony. Washington DC, USA: Smithson Inst.; 2014.
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Google Scholar
Nylander JAA. MrModeltest v2. Uppsala, Sweden: Progr Distrib by author Evol Biol Centre, Uppsala Univ.; 2004.
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:1–6.
Google Scholar
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol. 2018;67:901–4.
Google Scholar
Jackson JBC, O’Dea A. Timing of the oceanographic and biological isolation of the Caribbean sea from the tropical eastern pacific ocean. Bull Mar Sci. 2013;89:779–800.
Haug G, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature. 1998;394:1699–701.
O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, et al. Formation of the Isthmus of Panama. Sci Adv. 2016;2:1–12.
Google Scholar
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.
Google Scholar
Bouckaert R, Heled J DensiTree 2: seeing trees through the forest. 2014. https://www.biorxiv.org/content/10.1101/012401v1.
Bay LK, Howells EJ, van Oppen MJH. Isolation, characterisation and cross amplification of thirteen microsatellite loci for coral endo-symbiotic dinoflagellates (Symbiodinium clade C). Conserv Genet Resour. 2009;1:199–203.
Google Scholar
Peakall R, Smouse PE. GenALEx 6.5: genetic analysis in excel. population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537–9.
Google Scholar
Davies SW, Moreland KN, Wham DC, Kanke MR, Matz MV. Cladocopium community divergence in two Acropora coral hosts across multiple spatial scales. Mol Ecol. 2020;29:4559–72.
Google Scholar
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–61.
Google Scholar
Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol. 2018;1:95.
Google Scholar
Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity. 1995:248–9.
Rousset F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour. 2008;86:103–6.
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Google Scholar
van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.
LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol. 2018;28:2570–2580.e6.
Google Scholar
LaJeunesse TC, Bonilla HR, Warner ME, Wills M, Schmidt GW, Fitt WK. Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr. 2008;53:719–27.
Google Scholar
Ramsby BD, Hill MS, Thornhill DJ, Steenhuizen SF, Achlatis M, Lewis AM, et al. Sibling species of mutualistic Symbiodinium Clade G from bioeroding sponges in the western Pacific and western Atlantic oceans. J Phycol. 2017;53:951–60.
Google Scholar
Prada C, McIlroy SE, Beltrán DM, Valint DJ, Ford SA, Hellberg ME, et al. Cryptic diversity hides host and habitat specialization in a gorgonian-algal symbiosis. Mol Ecol. 2014;23:3330–40.
Google Scholar
Wham DC, Ning G, LaJeunesse TC. Symbiodinium glynnii sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean. Phycologia. 2017;56:396–409.
Google Scholar
Mayr E. The growth of biological thought: Diversity, evolution, and inheritance. Cambridge, MA, USA: Belknap Press of Harvard University Press; 1982.
Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA. Standardizing methods to address clonality in population studies. Mol Ecol. 2007;16:5115–39.
Google Scholar
Jeong HJ, Lee SY, Kang NS, Yoo YD, Lim AS, Lee MJ, et al. Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (dinophyceae) as the sole representative of Symbiodinium Clade E. J Eukaryot Microbiol. 2014;61:75–94.
Google Scholar
Blank RJ, Trench RK. Speciation and symbiotic dinoflagellates. Science. 1985;229:656–8.
Google Scholar
Suggett DJ, Moore CM, Hickman AE, Geider RJ. Interpretation of fast repetition rate (FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser. 2009;376:1–19.
Google Scholar
Suggett DJ, Goyen S, Evenhuis C, Szabó M, Pettay DT, Warner ME, et al. Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. New Phytol. 2015;208:370–81.
Google Scholar
Geider R, Piatt T, Raven J. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar Ecol Prog Ser. 1986;30:93–104.
Google Scholar
Finkel ZV. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr. 2001;46:86–94.
Google Scholar
Irwin AJ, Finkel ZV, Schofield OME, Falkowski PG. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J Plankton Res. 2006;28:459–71.
Google Scholar
Wu Y, Campbell DA, Irwin AJ, Suggett DJ, Finkel ZV. Ocean acidification enhances the growth rate of larger diatoms. Limnol Oceanogr. 2014;59:1027–34.
Google Scholar
Rowan R. Coral bleaching: thermal adaptation in reef coral symbionts. Nature. 2004;430:742.
Google Scholar
Berkelmans R, Van, Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B Biol Sci. 2006;273:2305–12.
Google Scholar
Abrego D, Ulstrup KE, Willis BL, Van Oppen MJH. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B Biol Sci. 2008;275:2273–82.
Google Scholar
Schluter D. Evidence for ecological speciation and its alternative. Science. 2009;323:737–41.
Google Scholar
Hendry AP, Nosil P, Rieseberg LH. The speed of ecological speciation. Funct Ecol. 2007;21:455–64.
Google Scholar
Glynn PW, Gassman NJ, Eakin CM, Cortes J, Smith DB, Guzman HM. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). Mar Biol. 1991;109:355–68.
Google Scholar
Hirose M, Kinzie RA, Hidaka M. Early development of zooxanthella-containing eggs of the corals Pocillopora verrucosa and P. eydouxi with special reference to the distribution of zooxanthellae. Biol Bull. 2000;199:68–75.
Google Scholar
Chavez-Romo H. Sexual reproduction of the coral Pocillopora damicornis in the southern Gulf of California. Mex Cienc Mar. 2007;33:495–501.
Google Scholar
Russell SL, Chappell L, Sullivan W. A symbiont’s guide to the germline. 1st ed. In: Current topics in developmental biology. Vol 135. Amsterdam, The Netherlands: Elsevier Inc.; 2019. p. 351.
LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW. High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs. 2004;23:596–603.
Rowan ROB, Powers DA. A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science. 1991;251:1348–51.
Google Scholar
Zachos JC, Dickens GR, Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008;451:279–83.
Google Scholar
LaJeunesse TC, Parkinson JE, Reimer JD. A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol. 2012;48:1380–91.
Google Scholar
Pettay DT, LaJeunesse TC. Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS ONE. 2013;8:1–12.
Google Scholar
Wicks LC, Sampayo E, Gardner JPA, Davy SK. Local endemicity and high diversity characterise high-latitude coral- Symbiodinium partnerships. Coral Reefs. 2010;29:989–1003.
Google Scholar
Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S. Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol. 2007;16:3721–33.
Google Scholar
Thompson JN. The geographic mosaic of coevolution. Chicago, IL, USA: University of Chicago Press; 2005.
Sampayo EM, Ridgway T, Franceschinis L, Roff G, Hoegh-Guldberg O, Dove S. Coral symbioses under prolonged environmental change: living near tolerance range limits. Sci Rep. 2016;6:36271.
Google Scholar
Janis CM. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst. 1993;24:467–500.
Google Scholar
Willeit M, Ganopolski A, Calov R, Brovkin V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci Adv. 2019;5:eaav7337.
Google Scholar
Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. Mechanisms of reef coral resistance to future climate change. Science. 2014;344:895–8.
Google Scholar
Pandolfi JM, Jackson JBC, Geister J. Geologically sudden extinction of two widespread late Pleistocene Caribbean reef corals. In: Evolutionary patterns: growth, form and tempo in the fossil record. Chicago, IL, USA: University of Chicago Press; 2001. p. 120–58.
Toth LT, Aronson RB, Cobb KM, Cheng H, Edwards RL, Grothe PR, et al. Climatic and biotic thresholds of coral-reef shutdown. Nat Clim Chang. 2015;5:369–74.
Google Scholar
Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol Appl. 2019;29:1–23.
Google Scholar
Source: Ecology - nature.com