in

Native soil amendments combined with commercial arbuscular mycorrhizal fungi increase biomass of Panicum amarum

  • 1.

    Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 14, 101–108 (2015).

    Article 

    Google Scholar 

  • 2.

    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2577 (2018).

    Article 

    Google Scholar 

  • 3.

    Rey Benayas, J. M., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 325, 1121–1124. https://doi.org/10.1126/science.1172460 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Brudvig, L. A. et al. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54, 1018–1027. https://doi.org/10.1111/1365-2664.12938 (2017).

    Article 

    Google Scholar 

  • 5.

    Suding, K. N. Toward an era of restoration in ecology: Successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115 (2011).

    Article 

    Google Scholar 

  • 6.

    Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: Plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).

    Article 

    Google Scholar 

  • 7.

    Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    Article 

    Google Scholar 

  • 8.

    Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407. https://doi.org/10.1111/j.1461-0248.2009.01430.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Schultz, P. A. et al. Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am. J. Bot. 88, 1650–1656. https://doi.org/10.2307/3558410 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Koske, R. E., & Gemma, J. N. Mycorrhizae and succession in plantings of beachgrass in sand dunes. Am. J. Bot. 84(1), 118–130 (1997).

    Article 

    Google Scholar 

  • 11.

    Smith, M. E., Facelli, J. M. & Cavagnaro, T. R. Interactions between soil properties, soil microbes and plants in remnant-grassland and old-field areas: a reciprocal transplant approach. Plant Soil 433, 127–145. https://doi.org/10.1007/s11104-018-3823-2 (2018).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Tipton, A. G., Middleton, E. L., Spollen, W. G. & Galen, C. Anthropogenic and soil environmental drivers of arbuscular mycorrhizal community composition differ between grassland ecosystems. Botany 97, 85–99. https://doi.org/10.1139/cjb-2018-0072 (2019).

    Article 

    Google Scholar 

  • 13.

    Hamman, S. T. & Hawkes, C. V. Biogeochemical and microbial legacies of non-native grasses can affect restoration success. Restor. Ecol. 21, 58–66. https://doi.org/10.1111/j.1526-100X.2011.00856.x (2013).

    Article 

    Google Scholar 

  • 14.

    Emery, S. M. & Rudgers, J. A. Beach restoration efforts influenced by plant variety, soil inoculum, and site effects. J. Coast. Res. 27, 636. https://doi.org/10.2112/jcoastres-d-10-00120.1 (2010).

    Article 

    Google Scholar 

  • 15.

    Sylvia, D. M., Jarstfer, A. G. & Vosátka, M. Comparisons of vesicular-arbuscular mycorrhizal species and inocula formulations in a commercial nursery and on diverse Florida beaches. Biol. Fertil. Soils 16, 139–144. https://doi.org/10.1007/BF00369416 (1993).

    Article 

    Google Scholar 

  • 16.

    Sylvia, D. M. & Will, M. E. Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida. Appl. Environ. Microbiol. 54, 348–352 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107. https://doi.org/10.1038/nplants.2016.107 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Bothe, H., Turnau, K. & Regvar, M. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20, 445–457. https://doi.org/10.5586/asbp.2008.019 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Middleton, E. L. & Bever, J. D. Inoculation with a native soil community advances succession in a grassland restoration. Restor. Ecol. 20, 218–226. https://doi.org/10.1111/j.1526-100X.2010.00752.x (2012).

    Article 

    Google Scholar 

  • 20.

    Crawford, K. M., Busch, M. H., Locke, H. & Luecke, N. C. Native soil microbial amendments generate trade-offs in plant productivity, diversity, and soil stability in coastal dune restorations. Restor. Ecol. https://doi.org/10.1111/rec.13073 (2019).

    Article 

    Google Scholar 

  • 21.

    Eom, A. H., Hartnett, D. C. & Wilson, G. W. T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122, 435–444. https://doi.org/10.1007/s004420050050 (2000).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).

    Article 

    Google Scholar 

  • 23.

    Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 46, 305–325. https://doi.org/10.1146/annurev-ecolsys-112414-054306 (2015).

    Article 

    Google Scholar 

  • 24.

    Crawford, K. M. et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 13278. https://doi.org/10.1111/ele.13278 (2019).

    Article 

    Google Scholar 

  • 25.

    Mills, K. E. & Bever, J. D. Maintenance of diversity within plant communities: Soil pathogens as agents of negative feedback. Ecology 79, 1595–1601. https://doi.org/10.1890/0012-9658(1998)079[1595:MODWPC]2.0.CO;2 (1998).

    Article 

    Google Scholar 

  • 26.

    Koziol, L. et al. The plant microbiome and native plant restoration: The example of native mycorrhizal fungi. Bioscience 68, 996–1006 (2018).

    Article 

    Google Scholar 

  • 27.

    Maltz, M. R. & Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: A meta-analysis. Restor. Ecol. 23, 625–634. https://doi.org/10.1111/rec.12231 (2015).

    Article 

    Google Scholar 

  • 28.

    Koziol, L. & Bever, J. D. AMF, phylogeny, and succession: Specificity of response to mycorrhizal fungi increases for late-successional plants. Ecosphere https://doi.org/10.1002/ecs2.1555 (2016).

    Article 

    Google Scholar 

  • 29.

    Middleton, E. L. et al. Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere 6, 276. https://doi.org/10.1890/ES15-00152.1 (2015).

    Article 

    Google Scholar 

  • 30.

    Solís-Domínguez, F. A., Valentín-Vargas, A., Chorover, J. & Maier, R. M. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci. Total Environ. 409, 1009–1016. https://doi.org/10.1016/j.scitotenv.2010.11.020 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Vogelsang, K. M., Reynolds, H. L. & Bever, J. D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172, 554–562. https://doi.org/10.1111/j.1469-8137.2006.01854.x (2006).

    Article 
    PubMed 

    Google Scholar 

  • 32.

    Larimer, A. L., Bever, J. D. & Clay, K. Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121, 2090–2096. https://doi.org/10.1111/j.1600-0706.2012.20153.x (2012).

    Article 

    Google Scholar 

  • 33.

    Sikes, B. A., Cottenie, K. & Klironomos, J. N. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol. 97, 1274–1280. https://doi.org/10.1111/j.1365-2745.2009.01557.x (2009).

    Article 

    Google Scholar 

  • 34.

    Defeo, O. et al. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 81, 1–12 (2009).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Feagin, R. A. et al. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Front. Ecol. Environ. 13, 203–210 (2015).

    Article 

    Google Scholar 

  • 36.

    Feagin, R. A. et al. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar Coast Shelf Sci. 219, 97–106. https://doi.org/10.1016/j.ecss.2019.01.018 (2019).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Sigren, J. M., Figlus, J. & Armitage, A. R. Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore Beach 82, 5–12 (2014).

    Google Scholar 

  • 38.

    Sigren, J. M. et al. The effects of coastal dune volume and vegetation on storm-induced property damage: Analysis from Hurricane Ike. J. Coast Res. 341, 164–173. https://doi.org/10.2112/jcoastres-d-16-00169.1 (2018).

    Article 

    Google Scholar 

  • 39.

    Silva, R. et al. Response of vegetated dune-beach systems to storm conditions. Coast. Eng. 109, 53–62. https://doi.org/10.1016/j.coastaleng.2015.12.007 (2016).

    Article 

    Google Scholar 

  • 40.

    Lane, C., Wright, S. J., Roncal, J. & Maschinski, J. Characterizing environmental gradients and their influence on vegetation zonation in a subtropical coastal sand dune system. J. Coast. Res. 4, 213–224. https://doi.org/10.2112/07-0853.1 (2008).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Miller, T. E., Gornish, E. S. & Buckley, H. L. Climate and coastal dune vegetation: Disturbance, recovery, and succession. Plant Ecol. 206, 97–104. https://doi.org/10.1007/s11258-009-9626-z (2010).

    Article 

    Google Scholar 

  • 42.

    Hewitt, E. J. & Eden, A. Sand and water culture methods used in the study of plant nutrition. Analyst 78, 329–330 (1953).

    Google Scholar 

  • 43.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria). https://www.R-project.org/ (2020).

    Google Scholar 

  • 44.

    Farrer, E. C. & Goldberg, D. E. Litter drives ecosystem and plant community changes in cattail invasion. Ecol. Appl. 19, 398–412. https://doi.org/10.1890/08-0485.1 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Bauer, J. T., Koziol, L. & Bever, J. D. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia https://doi.org/10.1007/s00442-020-04598-9 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 46.

    Ohsowski, B. M., Klironomos, J. N., Dunfield, K. E. & Hart, M. M. The potential of soil amendments for restoring severely disturbed grasslands. Appl. Soil. Ecol. 60, 77–83. https://doi.org/10.1016/j.apsoil.2012.02.006 (2012).

    Article 

    Google Scholar 

  • 47.

    Koziol, L. & Bever, J. D. The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J. Appl. Ecol. 54, 1301–1309. https://doi.org/10.1111/1365-2664.12843 (2017).

    Article 

    Google Scholar 

  • 48.

    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193. https://doi.org/10.1016/0169-5347(94)90088-4 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Heneghan, L. et al. Integrating soil ecological knowledge into restoration management. Restor. Ecol. 16, 608–617. https://doi.org/10.1111/j.1526-100X.2008.00477.x (2008).

    Article 

    Google Scholar 

  • 50.

    Wubs, E. R. J. et al. Single introductions of soil biota and plants generate long-term legacies in soil and plant community assembly. Ecol. Lett. 22, 1145–1151 (2019).

    Article 

    Google Scholar 

  • 51.

    Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233–242. https://doi.org/10.1038/s42003-019-0481-8 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT-designed project achieves major advance toward fusion energy

    Historical land use has long-term effects on microbial community assembly processes in forest soils