in

Natural selection for imprecise vertical transmission in host–microbiota systems

  • 1.

    Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Johnson, K. V.-A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).

    PubMed 

    Google Scholar 

  • 6.

    Matsuoka, K. & Kanai, T. The gut microbiota and inflammatory bowel disease. Semin. Immunopathol. 37, 47–55 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Berg, M. & Koskella, B. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 28, 2487–2492 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413 (2015).

  • 10.

    Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & William, W. J. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Camarinha-Silva, A. et al. Host genome influence on gut microbial composition and microbial prediction of complex traits in pigs. Genetics 206, 1637–1644 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Difford, G. F. et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 14, e1007580 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).

  • 15.

    Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Roughgarden, J., Gilbert, S. F., Rosenberg, E., Zilber-Rosenberg, I. & Lloyd, E. A. Holobionts as units of selection and a model of their population dynamics and evolution. Biol. Theory 13, 44–65 (2018).

    Google Scholar 

  • 19.

    Fukatsu, T. & Hosokawa, T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl. Environ. Microbiol. 68, 389–396 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Jahnes, B. C., Herrmann, M. & Sabree, Z. L. Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 7, e6914 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Estes, A. M. et al. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 8, e79061 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    van Vliet, S. & Doebeli, M. The role of multilevel selection in host microbiome evolution. Proc. Natl Acad. Sci. USA 116, 20591–20597 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Zeng, Q., Wu, S., Sukumaran, J. & Rodrigo, A. Models of microbiome evolution incorporating host and microbial selection. Microbiome 5, 127 (2017).

  • 25.

    Björk, J. R., Diez-Vives, C., Astudillo-Garcia, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099-15 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Hammer, T. J. & Moran, N. A. Links between metamorphosis and symbiosis in holometabolous insects. Phil. Trans. R. Soc. B 374, 20190068 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Metcalf, C. J. E., Henry, L. P., Rebolleda-Gomez, M. & Koskella, B. Why evolve reliance on the microbiome for timing of ontogeny?. mBio 10, e01496-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Bruijning, M., Metcalf, C. J. E., Jongejans, E. & Ayroles, J. F. The evolution of variance control. Trends Ecol. Evol. 35, 22–23 (2020).

    PubMed 

    Google Scholar 

  • 30.

    Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004).

    Google Scholar 

  • 33.

    Halley, J. M. Ecology, evolution and 1f-noise. Trends Ecol. Evol. 11, 33–37 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).

    PubMed 

    Google Scholar 

  • 37.

    Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Burns, A. R. et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc. Natl Acad. Sci. USA 114, 11181–11186 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M. & Nachman, M. W. Transmission modes of the mammalian gut microbiota. Science 362, 453–457 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Zapién-Campos, R., Sieber, M. & Traulsen, A. Stochastic colonization of hosts with a finite lifespan can drive individual host microbes out of equilibrium. PLoS Comput. Biol. 16, e1008392 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    De Vries, E. J., Jacobs, G., Sabelis, M. W., Menken, S. B. J. & Breeuwer, J. A. J. Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc. R. Soc. Lond. B 271, 2171–2178 (2004).

    Google Scholar 

  • 42.

    Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. N. Phytol. 135, 575–585 (1997).

    Google Scholar 

  • 43.

    Cheney, K. L. & Côté, I. M. Mutualism or parasitism? The variable outcome of cleaning symbioses. Biol. Lett. 1, 162–165 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).

    PubMed 

    Google Scholar 

  • 45.

    Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).

    PubMed 

    Google Scholar 

  • 48.

    Ives, A. R. et al. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat. Ecol. Evol. 4, 702–711 (2020).

    PubMed 

    Google Scholar 

  • 49.

    Chen, D.-Q., Montllor, C. B. & Purcell, A. H. Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol. Exp. Appl. 95, 315–323 (2000).

    Google Scholar 

  • 50.

    Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).

    Google Scholar 

  • 51.

    Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Kikuchi, Y. & Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl. Environ. Microbiol. 79, 2088–2091 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).

    PubMed 

    Google Scholar 

  • 55.

    Caswell, H. Matrix Population Models: Construction, Analysis and Interpretation (Sinauer Associates, 2001).

  • 56.

    Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2, e00164-16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Ibáñez, F., Tonelli, M. L., Muñoz, V., Figueredo, M. S. & Fabra, A. in Endophytes: Biology and Biotechnology (ed. Maheshwari, D.) 25–40 (Springer, 2017).

  • 62.

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).

    CAS 

    Google Scholar 

  • 64.

    Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Chrostek, E. & Teixeira, L. Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol. 13, e1002065 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Ravel, C., Michalakis, Y. & Charmet, G. The effect of imperfect transmission on the frequency of mutualistic seed-borne endophytes in natural populations of grasses. Oikos 80, 18–24 (1997).

    Google Scholar 

  • 67.

    Buskirk, S. W., Rokes, A. B. & Lang, G. I. Adaptive evolution of nontransitive fitness in yeast. eLife 9, e62238 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Clune, J. et al. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Comput. Biol. 4, e1000187 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    King, O. D. & Masel, J. The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol. 72, 560–575 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Liu, X.-D., Lei, H.-X. & Chen, F.-F. Infection pattern and negative effects of a facultative endosymbiont on its insect host are environment-dependent. Sci. Rep. 9, 4013 (2019).

  • 71.

    Oyserman, B. O. et al. Extracting the GEMs: genotype, environment, and microbiome interactions shaping host phenotypes. Front. Microbiol. 11, 3444 (2021).

    Google Scholar 

  • 72.

    Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).

    PubMed 

    Google Scholar 

  • 73.

    Osaka, R., Nomura, M., Watada, M. & Kageyama, D. Negative effects of low temperatures on the vertical transmission and infection density of a Spiroplasma endosymbiont in Drosophila hydei. Curr. Microbiol. 57, 335–339 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Gundel, P. E. et al. Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microb. Ecol. 57, 740 (2009).

    PubMed 

    Google Scholar 

  • 75.

    Li, L. & Ma, Z. S. Testing the neutral theory of biodiversity with human microbiome datasets. Sci. Rep. 6, 31448 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Scheuring, I. & Yu, D. W. How to assemble a beneficial microbiome in three easy steps. Ecol. Lett. 15, 1300–1307 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Roughgarden, J. Holobiont evolution: Mathematical model with vertical vs. horizontal microbiome transmission. Phil. Theory Pract. Biol. 12, 002 (2020).

  • 81.

    Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).

    PubMed 

    Google Scholar 

  • 83.

    Gillespie, J. Polymorphism in random environments. Theor. Popul. Biol. 4, 193–195 (1973).

    Google Scholar 

  • 84.

    Bruijning, M. Code for: Natural selection for imprecise vertical transmission in host-microbiota systems. Zenodo https://doi.org/10.5281/zenodo.5534317 (2021).

  • 85.

    Sauer, C., Dudaczek, D., Hölldobler, B. & Gross, R. Tissue localization of the endosymbiotic bacterium “Candidatus Blochmannia floridanus” in adults and larvae of the carpenter ant Camponotus floridanus. Appl. Environ. Microbiol. 68, 4187–4193 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Koga, R., Meng, X.-Y., Tsuchida, T. & Fukatsu, T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc. Natl Acad. Sci. USA 109, E1230–E1237 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Brentassi, M. E. et al. Bacteriomes of the corn leafhopper, Dalbulus maidis (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor Sulcia symbiont: molecular characterization, ultrastructure, and transovarial transmission. Protoplasma 254, 1421–1429 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Picazo, D. R. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).

    Google Scholar 

  • 89.

    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17, 764–775 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 93.

    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT in the media: 2021 in review

    Allergenicity to worldwide invasive grass Cortaderia selloana as environmental risk to public health