in

Nature-inspired wax-coated jute bags for reducing post-harvest storage losses

  • 1.

    World Food Programme. Hunger, Conflict, and Improving the Prospects for Peace. Rome, Italy. https://www.wfp.org/publications/hunger-conflict-and-improving-prospects-peace-fact-sheet-2020 (October 2020).

  • 2.

    United-Nations. World Population Prospects: The 2017 Revision.(United Nations, Department of Economic and Social Affairs, Population Division, 2017).

    Book 

    Google Scholar 

  • 3.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper No. 12-03. Rome, FAO (FAO, 2012).

    Google Scholar 

  • 4.

    FAO. The Future of Food and Agriculture: Trends and Challenges (Food and Agriculture Organization of the United Nations, 2017).

    Google Scholar 

  • 5.

    FAO. Global Agriculture Towards 2050 1–4 (Food and Agriculture Organization, 2009).

    Google Scholar 

  • 6.

    Ulrike, G., Anja F., Thanh, N. T., & Olaf, E. Food security and the dynamics of wheat and maize value Chains in Africa and Asia.Front. Sustain. Food Syst. 4, (317) https://doi.org/10.3389/fsufs.2020.617009 (2021).

    Article 

    Google Scholar 

  • 7.

    FAO. Global Food Losses and Food Waste—Extent, Causes, and Prevention. Rome. http://www.fao.org/3/i2697e/i2697e.pdf (2011).

  • 8.

    Mesterhazy, A., Olah, J. & Popp, J. Losses in the grain supply chain: Causes and solutions. Sustainability https://doi.org/10.3390/su12062342 (2020).

    Article 

    Google Scholar 

  • 9.

    Jayas, D. S. Storing grains for food security and sustainability. Agric. Res. 1, 21–24. https://doi.org/10.1007/s40003-011-0004-4 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Lal, R. Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food Energy Secur. 5, 239–251. https://doi.org/10.1002/fes3.99 (2016).

    Article 

    Google Scholar 

  • 11.

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999-U980. https://doi.org/10.1038/nature08238 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Solander, K. C., Reager, J. T., Wada, Y., Famiglietti, J. S. & Middleton, R. S. GRACE satellite observations reveal the severity of recent water over-consumption in the United States. Sci. Rep. https://doi.org/10.1038/s41598-017-07450-y (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Scanlon, B. R., Longuevergne, L. & Long, D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res. https://doi.org/10.1029/2011wr011312 (2012).

    Article 

    Google Scholar 

  • 14.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Chang. 4, 945–948 (2014).

    ADS 
    Article 

    Google Scholar 

  • 15.

    FAO. Seeds Toolkit-Module 6: Seed Storage. Rome, pp. 112. http://www.fao.org/3/ca1495en/CA1495EN.pdf (2018).

  • 16.

    Sawicka, B. Post-harvest losses of agricultural produce. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Zero Hunger. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-69626-3_40-1 (2019).

    Chapter 

    Google Scholar 

  • 17.

    De Lucia, M. A. D. Agricultural Engineering in Development: Post-harvest Operations and Management of Foodgrains (FAO Agricultural Services, 1994).

    Google Scholar 

  • 18.

    Hodges, R. J., Buzby, J. C. & Bennett, B. Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. J. Agric. Sci. 149, 37–45. https://doi.org/10.1017/S0021859610000936 (2011).

    Article 

    Google Scholar 

  • 19.

    Kumar, D. & Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6, 8–8. https://doi.org/10.3390/foods6010008 (2017).

    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Abedin, M. R. M., Mia, M. & Rahman, K. In-store losses of rice and ways of reducing such losses at farmers’ level: An assessment in selected regions of Bangladesh. J. Bangladesh Agric. Univ. 10, 133–144. https://doi.org/10.3329/jbau.v10i1.12105 (2012).

    Article 

    Google Scholar 

  • 21.

    Tesfaye, W. & Tirivayi, N. The impacts of postharvest storage innovations on food security and welfare in Ethiopia. Food Policy 75, 52–67. https://doi.org/10.1016/j.foodpol.2018.01.004 (2018).

    Article 

    Google Scholar 

  • 22.

    Boxall, R. A. Post harvest-losses to insects–A world overview. Int. Biodeterior. Biodegrad. 48, 137–152 (2001).

    Article 

    Google Scholar 

  • 23.

    Rachoń, L.B.-M.A. & Szumiło, G. Mycotoxin contamination of grain of selected winter wheat genotypes. Pol. J. Agron. 25, 13–18 (2016).

    Google Scholar 

  • 24.

    Kumar, R., Mishra, A. K., Dubey, N. K. & Tripathi, Y. B. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 115, 159–164. https://doi.org/10.1016/j.ijfoodmicro.2006.10.017 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Liu, Y. & Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 118, 818–824. https://doi.org/10.1289/ehp.0901388 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Roberts, E. H. & Ellis, R. H. Water and seed survival. Ann. Bot. 63, 39–39. https://doi.org/10.1093/oxfordjournals.aob.a087727 (1989).

    Article 

    Google Scholar 

  • 27.

    Bradford, K. J., Dahal, P. & Bello, P. Using relative humidity indicator paper to measure seed and commodity moisture contents. Agric. Environ. Lett. https://doi.org/10.2134/ael2016.04.0018 (2016).

    Article 

    Google Scholar 

  • 28.

    Bradford, K. J. et al. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 71, 84–93. https://doi.org/10.1016/j.tifs.2017.11.002 (2018).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M. & Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy 3rd edn. (Springer, 2013).

    Book 

    Google Scholar 

  • 30.

    Harrington, J. F. In Seed Biology, Vol. III (ed. Kozlowski, T. T.) (Academic Press, 1972).

    Google Scholar 

  • 31.

    Harrington, J. F. Biochemical basis of seed longevity. Seed Sci. Technol. 1, 453–461 (1973).

    CAS 

    Google Scholar 

  • 32.

    Delouche, J. C., Matthes, R. K., Dougherty, G. M. & Boyd, A. H. Storage of seed in sub-tropical and tropical regions. Seed Sci. Technol. 1, 671–700 (1973).

    Google Scholar 

  • 33.

    Roberts, E. H. Predicting the storage life of seeds. Seed Sci. Technol. 1, 499–514 (1973).

    Google Scholar 

  • 34.

    Roberts, E. H. Viability of Seeds (Springer, 2012).

    Google Scholar 

  • 35.

    Harrington, J. F. Drying, storage, and packaging seed to maintain germination and vigor. Seed Technology Papers. 44. https://scholarsjunction.msstate.edu/seedtechpapers/44 (1959).

  • 36.

    Bakhtavar, M. A. & Afzal, I. Climate smart dry chain technology for safe storage of quinoa seeds. Sci. Rep. https://doi.org/10.1038/s41598-020-69190-w (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Murdock, L. L. & Baoua, I. B. On Purdue Improved Cowpea Storage (PICS) technology: Background, mode of action, future prospects. J. Stored Prod. Res. 58, 3–11. https://doi.org/10.1016/j.jspr.2014.02.006 (2014).

    Article 

    Google Scholar 

  • 38.

    Baoua, I. B., Amadou, L. & Murdock, L. L. Triple bagging for cowpea storage in rural Niger: Questions farmers ask. J. Stored Prod. Res. 52, 86–92. https://doi.org/10.1016/j.jspr.2012.12.004 (2013).

    Article 

    Google Scholar 

  • 39.

    Murdock, L. L., Margam, V., Baoua, I., Balfe, S. & Shade, R. E. Death by desiccation: Effects of hermetic storage on cowpea bruchids. J. Stored Prod. Res. 49, 166–170. https://doi.org/10.1016/j.jspr.2012.01.002 (2012).

    Article 

    Google Scholar 

  • 40.

    Bakhtavar, M. A., Afzal, I. & Basra, S. M. A. Moisture adsorption isotherms and quality of seeds stored in conventional packaging materials and hermetic Super Bag. PLoS One https://doi.org/10.1371/jounal.pone.0207569 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Gupta, M. K., Srivastava, R. K. & Bisaria, H. Potential of jute fibre reinforced polymer composites: a review. Int. J. Fiber Textile Res. 5, 30–38 (2015).

    ADS 

    Google Scholar 

  • 42.

    Wang, W.-M., Cai, Z.-S. & Yu, J.-Y. Study on the chemical modification process of jute fiber. J. Eng. Fibers Fabr. 3, 155892500800300200. https://doi.org/10.1177/155892500800300203 (2008).

    Article 

    Google Scholar 

  • 43.

    Rajesh, G. & Prasad, A. V. R. Tensile properties of successive alkali-treated short jute fiber reinforced PLA composites. Procedia
    Mater. Sci.
    5, 2188–2196 (2014).

  • 44.

    Mwaikambo, L. Y. & Ansell, M. P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84, 2222–2234. https://doi.org/10.1002/app.10460 (2002).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Ali, A. et al. Hydrophobic treatment of natural fibers and their composites—a review. J. Ind. Text. 47, 2153–2183. https://doi.org/10.1177/1528083716654468 (2018).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Manandhar, A., Milindi, P. & Shah, A. An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture 8, 57 (2018).

    Article 

    Google Scholar 

  • 47.

    Nagpal, M. & Kumar, A. Grain losses in India and government policies. Qual. Assur. Saf. Crops Foods 4, 143–143 (2012).

    Article 

    Google Scholar 

  • 48.

    Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8. https://doi.org/10.1007/s004250050096 (1997).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Mahadik, G. A. et al. Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Sci. Rep. 10, 7785. https://doi.org/10.1038/s41598-020-64563-7 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Das, R., Ahmad, Z., Nauruzbayeva, J. & Mishra, H. Biomimetic coating-free superomniphobicity. Sci. Rep. 10, 7934. https://doi.org/10.1038/s41598-020-64345-1 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Pan, Z. et al. The upside-down water collection system of Syntrichia caninervis. Nat. Plants 2, 16076. https://doi.org/10.1038/nplants.2016.76 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 52.

    Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34. https://doi.org/10.1038/35102108 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Darmanin, T. & Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 18, 273–285. https://doi.org/10.1016/j.mattod.2015.01.001 (2015).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Narhe, R. D. & Beysens, D. A. Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98–104. https://doi.org/10.1209/epl/i2006-10069-9 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 55.

    Ray, D., Sarkar, B. K., Rana, A. K. & Bose, N. R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 24, 129–135. https://doi.org/10.1007/bf02710089 (2001).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Chauhan, P., Kumar, A. & Bhushan, B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. J. Colloid Interface Sci. 535, 66–74. https://doi.org/10.1016/j.jcis.2018.09.087 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Bhushan, B. Biomimetics: Lessons from nature—an overview. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1445–1486. https://doi.org/10.1098/rsta.2009.0011 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Gassan, J. & Bledzki, A. K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 59, 1303–1309. https://doi.org/10.1016/S0266-3538(98)00169-9 (1999).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Taha, I., Steuernagel, L. & Ziegmann, G. Optimization of the alkali treatment process of date palm fibres for polymeric composites. Compos. Interfaces 14, 669–684. https://doi.org/10.1163/156855407782106528 (2007).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Kuruvilla, J., Sabu, T., Pavithran, C. & Brahmakumar, M. Tensile properties of short sisal fiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 47, 1731–1739. https://doi.org/10.1002/app.1993.070471003 (1993).

    Article 

    Google Scholar 

  • 61.

    Chen, H. et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose 24, 333–347. https://doi.org/10.1007/s10570-016-1116-6 (2017).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Wang, X., Chang, L. L., Shi, X. L. & Wang, L. H. Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials https://doi.org/10.3390/ma12091386 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Oushabi, A. et al. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–polyurethane composite. South Afr. J. Chem. Eng. 23, 116–123. https://doi.org/10.1016/j.sajce.2017.04.005 (2017).

    Article 

    Google Scholar 

  • 64.

    Subramanian, N. et al. Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. J. Colloid Interface Sci. 533, 723–732. https://doi.org/10.1016/j.jcis.2018.08.054 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Gallo Jr, A., K. et al. Superhydrophobic sand mulches increase agricultural productivity in arid regions. arXiv preprint. arXiv:2102.00495 (2021).

    Google Scholar 

  • 66.

    Mishra, H. et al. Time-dependent wetting behavior of PDMS surfaces with bioinspired, hierarchical structures. ACS Appl. Mater Interfaces 8, 8168–8174. https://doi.org/10.1021/acsami.5b10721 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Kaufman, Y. et al. Simple-to-Apply wetting model to predict thermodynamically stable and metastable contact angles on textured/rough/patterned surfaces. J. Phys. Chem. C 121, 5642–5656. https://doi.org/10.1021/acs.jpcc.7b00003 (2017).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Shi, M., Das, R., Arunachalam, S., & Mishra, H. Unexpected Suppression of Leidenfrost Phenomenon on Superhydrophobic Surfaces. arXiv preprint. https://arxiv.org/pdf/2102.02499.pdf (2021).

  • 69.

    Gallo Jr., A., Tavares, F., Das, R. & Mishra, H., How Particle–Particle and Liquid–Particle Interactions Govern the Fate of Evaporating Liquid Marbles. Soft Matter, https://doi.org/10.1039/D1SM00750E (2021)

  • 70.

    Ghosh, S. K., Ray Gupta, K., Bhattacharyya, R., Sahu, R. B. & Mandol, S. Improvement of life expectancy of jute based needlepunched geotextiles through bitumen treatment. J. Inst. Eng. India Ser. E 95, 111–121. https://doi.org/10.1007/s40034-014-0036-y (2014).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Das, R. et al. Proof-of-concept for gas-entrapping membranes derived from water-loving SiO2/Si/SiO2 wafers for green desalination. JoVE https://doi.org/10.3791/60583 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 72.

    Pillai, S. et al. A molecular to macro level assessment of direct contact membrane distillation for separating organics from water. J. Membr. Sci. 608, 118140. https://doi.org/10.1016/j.memsci.2020.118140 (2020).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Arunachalam, S. et al. Rendering SiO2/Si surfaces omniphobic by carving gas-entrapping microtextures comprising reentrant and doubly reentrant cavities or pillars. JoVE https://doi.org/10.3791/60403 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 74.

    Das, R., Arunachalam, S., Ahmad, Z., Manalastas, E. & Mishra, H. Bio-inspired gas-entrapping membranes (GEMs) derived from common water-wet materials for green desalination. J. Membr. Sci. https://doi.org/10.1016/j.memsci.2019.117185 (2019).

    Article 

    Google Scholar 

  • 75.

    Gonzalez-Avila, S. R. et al. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). Sci. Adv. 6, eaax6192. https://doi.org/10.1126/sciadv.aax6192 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Arunachalam, S., Das, R., Nauruzbayeva, J., Domingues, E. M. & Mishra, H. Assessing omniphobicity by immersion. J. Colloid Interface Sci. 534, 156–162. https://doi.org/10.1016/j.jcis.2018.08.059 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 77.

    Domingues, E. M., Arunachalam, S. & Mishra, H. Doubly reentrant cavities prevent catastrophic wetting transitions on intrinsically wetting surfaces. ACS Appl. Mater. Interface 9, 21532–21538. https://doi.org/10.1021/acsami.7b03526 (2017).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. I. Climate change and food systems. Annu. Rev. Environ. Resour. 37, 195–222. https://doi.org/10.1146/annurev-environ-020411-130608 (2012).

    Article 

    Google Scholar 

  • 79.

    Jury, W. A. & Vaux, H. The role of science in solving the world’s emerging water problems. Proc. Natl. Acad. Sci. USA 102, 15715–15720. https://doi.org/10.1073/pnas.0506467102 (2005).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Wexler, A. & Hasegawa, S. Relative humidity–temperature relationships of some saturated salt solutions in the temperature range 0-degree to 50-degrees-C. J. Res. Natl. Bur. Stand. 53, 19–26. https://doi.org/10.6028/jres.053.003 (1954).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Suma, A., Sreenivasan, K., Singh, A. K. & Radhamani, J. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa. Sci. World J. https://doi.org/10.1155/2013/504141 (2013).

    Article 

    Google Scholar 

  • 82.

    OriginPro. OriginLab Corporation. https://www.originlab.com/. Northampton, MA, USA (Version 2017).


  • Source: Ecology - nature.com

    What will happen to sediment plumes associated with deep-sea mining?

    A new approach to preventing human-induced earthquakes