World Food Programme. Hunger, Conflict, and Improving the Prospects for Peace. Rome, Italy. https://www.wfp.org/publications/hunger-conflict-and-improving-prospects-peace-fact-sheet-2020 (October 2020).
United-Nations. World Population Prospects: The 2017 Revision.(United Nations, Department of Economic and Social Affairs, Population Division, 2017).
Google Scholar
Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper No. 12-03. Rome, FAO (FAO, 2012).
FAO. The Future of Food and Agriculture: Trends and Challenges (Food and Agriculture Organization of the United Nations, 2017).
FAO. Global Agriculture Towards 2050 1–4 (Food and Agriculture Organization, 2009).
Ulrike, G., Anja F., Thanh, N. T., & Olaf, E. Food security and the dynamics of wheat and maize value Chains in Africa and Asia.Front. Sustain. Food Syst. 4, (317) https://doi.org/10.3389/fsufs.2020.617009 (2021).
Google Scholar
FAO. Global Food Losses and Food Waste—Extent, Causes, and Prevention. Rome. http://www.fao.org/3/i2697e/i2697e.pdf (2011).
Mesterhazy, A., Olah, J. & Popp, J. Losses in the grain supply chain: Causes and solutions. Sustainability https://doi.org/10.3390/su12062342 (2020).
Google Scholar
Jayas, D. S. Storing grains for food security and sustainability. Agric. Res. 1, 21–24. https://doi.org/10.1007/s40003-011-0004-4 (2012).
Google Scholar
Lal, R. Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food Energy Secur. 5, 239–251. https://doi.org/10.1002/fes3.99 (2016).
Google Scholar
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999-U980. https://doi.org/10.1038/nature08238 (2009).
Google Scholar
Solander, K. C., Reager, J. T., Wada, Y., Famiglietti, J. S. & Middleton, R. S. GRACE satellite observations reveal the severity of recent water over-consumption in the United States. Sci. Rep. https://doi.org/10.1038/s41598-017-07450-y (2017).
Google Scholar
Scanlon, B. R., Longuevergne, L. & Long, D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res. https://doi.org/10.1029/2011wr011312 (2012).
Google Scholar
Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Chang. 4, 945–948 (2014).
Google Scholar
FAO. Seeds Toolkit-Module 6: Seed Storage. Rome, pp. 112. http://www.fao.org/3/ca1495en/CA1495EN.pdf (2018).
Sawicka, B. Post-harvest losses of agricultural produce. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Zero Hunger. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-69626-3_40-1 (2019).
Google Scholar
De Lucia, M. A. D. Agricultural Engineering in Development: Post-harvest Operations and Management of Foodgrains (FAO Agricultural Services, 1994).
Hodges, R. J., Buzby, J. C. & Bennett, B. Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. J. Agric. Sci. 149, 37–45. https://doi.org/10.1017/S0021859610000936 (2011).
Google Scholar
Kumar, D. & Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6, 8–8. https://doi.org/10.3390/foods6010008 (2017).
Google Scholar
Abedin, M. R. M., Mia, M. & Rahman, K. In-store losses of rice and ways of reducing such losses at farmers’ level: An assessment in selected regions of Bangladesh. J. Bangladesh Agric. Univ. 10, 133–144. https://doi.org/10.3329/jbau.v10i1.12105 (2012).
Google Scholar
Tesfaye, W. & Tirivayi, N. The impacts of postharvest storage innovations on food security and welfare in Ethiopia. Food Policy 75, 52–67. https://doi.org/10.1016/j.foodpol.2018.01.004 (2018).
Google Scholar
Boxall, R. A. Post harvest-losses to insects–A world overview. Int. Biodeterior. Biodegrad. 48, 137–152 (2001).
Google Scholar
Rachoń, L.B.-M.A. & Szumiło, G. Mycotoxin contamination of grain of selected winter wheat genotypes. Pol. J. Agron. 25, 13–18 (2016).
Kumar, R., Mishra, A. K., Dubey, N. K. & Tripathi, Y. B. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 115, 159–164. https://doi.org/10.1016/j.ijfoodmicro.2006.10.017 (2007).
Google Scholar
Liu, Y. & Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 118, 818–824. https://doi.org/10.1289/ehp.0901388 (2010).
Google Scholar
Roberts, E. H. & Ellis, R. H. Water and seed survival. Ann. Bot. 63, 39–39. https://doi.org/10.1093/oxfordjournals.aob.a087727 (1989).
Google Scholar
Bradford, K. J., Dahal, P. & Bello, P. Using relative humidity indicator paper to measure seed and commodity moisture contents. Agric. Environ. Lett. https://doi.org/10.2134/ael2016.04.0018 (2016).
Google Scholar
Bradford, K. J. et al. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 71, 84–93. https://doi.org/10.1016/j.tifs.2017.11.002 (2018).
Google Scholar
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M. & Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy 3rd edn. (Springer, 2013).
Google Scholar
Harrington, J. F. In Seed Biology, Vol. III (ed. Kozlowski, T. T.) (Academic Press, 1972).
Harrington, J. F. Biochemical basis of seed longevity. Seed Sci. Technol. 1, 453–461 (1973).
Google Scholar
Delouche, J. C., Matthes, R. K., Dougherty, G. M. & Boyd, A. H. Storage of seed in sub-tropical and tropical regions. Seed Sci. Technol. 1, 671–700 (1973).
Roberts, E. H. Predicting the storage life of seeds. Seed Sci. Technol. 1, 499–514 (1973).
Roberts, E. H. Viability of Seeds (Springer, 2012).
Harrington, J. F. Drying, storage, and packaging seed to maintain germination and vigor. Seed Technology Papers. 44. https://scholarsjunction.msstate.edu/seedtechpapers/44 (1959).
Bakhtavar, M. A. & Afzal, I. Climate smart dry chain technology for safe storage of quinoa seeds. Sci. Rep. https://doi.org/10.1038/s41598-020-69190-w (2020).
Google Scholar
Murdock, L. L. & Baoua, I. B. On Purdue Improved Cowpea Storage (PICS) technology: Background, mode of action, future prospects. J. Stored Prod. Res. 58, 3–11. https://doi.org/10.1016/j.jspr.2014.02.006 (2014).
Google Scholar
Baoua, I. B., Amadou, L. & Murdock, L. L. Triple bagging for cowpea storage in rural Niger: Questions farmers ask. J. Stored Prod. Res. 52, 86–92. https://doi.org/10.1016/j.jspr.2012.12.004 (2013).
Google Scholar
Murdock, L. L., Margam, V., Baoua, I., Balfe, S. & Shade, R. E. Death by desiccation: Effects of hermetic storage on cowpea bruchids. J. Stored Prod. Res. 49, 166–170. https://doi.org/10.1016/j.jspr.2012.01.002 (2012).
Google Scholar
Bakhtavar, M. A., Afzal, I. & Basra, S. M. A. Moisture adsorption isotherms and quality of seeds stored in conventional packaging materials and hermetic Super Bag. PLoS One https://doi.org/10.1371/jounal.pone.0207569 (2019).
Google Scholar
Gupta, M. K., Srivastava, R. K. & Bisaria, H. Potential of jute fibre reinforced polymer composites: a review. Int. J. Fiber Textile Res. 5, 30–38 (2015).
Google Scholar
Wang, W.-M., Cai, Z.-S. & Yu, J.-Y. Study on the chemical modification process of jute fiber. J. Eng. Fibers Fabr. 3, 155892500800300200. https://doi.org/10.1177/155892500800300203 (2008).
Google Scholar
Rajesh, G. & Prasad, A. V. R. Tensile properties of successive alkali-treated short jute fiber reinforced PLA composites. Procedia
Mater. Sci. 5, 2188–2196 (2014).
Mwaikambo, L. Y. & Ansell, M. P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84, 2222–2234. https://doi.org/10.1002/app.10460 (2002).
Google Scholar
Ali, A. et al. Hydrophobic treatment of natural fibers and their composites—a review. J. Ind. Text. 47, 2153–2183. https://doi.org/10.1177/1528083716654468 (2018).
Google Scholar
Manandhar, A., Milindi, P. & Shah, A. An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture 8, 57 (2018).
Google Scholar
Nagpal, M. & Kumar, A. Grain losses in India and government policies. Qual. Assur. Saf. Crops Foods 4, 143–143 (2012).
Google Scholar
Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8. https://doi.org/10.1007/s004250050096 (1997).
Google Scholar
Mahadik, G. A. et al. Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Sci. Rep. 10, 7785. https://doi.org/10.1038/s41598-020-64563-7 (2020).
Google Scholar
Das, R., Ahmad, Z., Nauruzbayeva, J. & Mishra, H. Biomimetic coating-free superomniphobicity. Sci. Rep. 10, 7934. https://doi.org/10.1038/s41598-020-64345-1 (2020).
Google Scholar
Pan, Z. et al. The upside-down water collection system of Syntrichia caninervis. Nat. Plants 2, 16076. https://doi.org/10.1038/nplants.2016.76 (2016).
Google Scholar
Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34. https://doi.org/10.1038/35102108 (2001).
Google Scholar
Darmanin, T. & Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 18, 273–285. https://doi.org/10.1016/j.mattod.2015.01.001 (2015).
Google Scholar
Narhe, R. D. & Beysens, D. A. Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98–104. https://doi.org/10.1209/epl/i2006-10069-9 (2006).
Google Scholar
Ray, D., Sarkar, B. K., Rana, A. K. & Bose, N. R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 24, 129–135. https://doi.org/10.1007/bf02710089 (2001).
Google Scholar
Chauhan, P., Kumar, A. & Bhushan, B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. J. Colloid Interface Sci. 535, 66–74. https://doi.org/10.1016/j.jcis.2018.09.087 (2019).
Google Scholar
Bhushan, B. Biomimetics: Lessons from nature—an overview. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1445–1486. https://doi.org/10.1098/rsta.2009.0011 (2009).
Google Scholar
Gassan, J. & Bledzki, A. K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 59, 1303–1309. https://doi.org/10.1016/S0266-3538(98)00169-9 (1999).
Google Scholar
Taha, I., Steuernagel, L. & Ziegmann, G. Optimization of the alkali treatment process of date palm fibres for polymeric composites. Compos. Interfaces 14, 669–684. https://doi.org/10.1163/156855407782106528 (2007).
Google Scholar
Kuruvilla, J., Sabu, T., Pavithran, C. & Brahmakumar, M. Tensile properties of short sisal fiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 47, 1731–1739. https://doi.org/10.1002/app.1993.070471003 (1993).
Google Scholar
Chen, H. et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose 24, 333–347. https://doi.org/10.1007/s10570-016-1116-6 (2017).
Google Scholar
Wang, X., Chang, L. L., Shi, X. L. & Wang, L. H. Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials https://doi.org/10.3390/ma12091386 (2019).
Google Scholar
Oushabi, A. et al. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–polyurethane composite. South Afr. J. Chem. Eng. 23, 116–123. https://doi.org/10.1016/j.sajce.2017.04.005 (2017).
Google Scholar
Subramanian, N. et al. Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. J. Colloid Interface Sci. 533, 723–732. https://doi.org/10.1016/j.jcis.2018.08.054 (2019).
Google Scholar
Gallo Jr, A., K. et al. Superhydrophobic sand mulches increase agricultural productivity in arid regions. arXiv preprint. arXiv:2102.00495 (2021).
Mishra, H. et al. Time-dependent wetting behavior of PDMS surfaces with bioinspired, hierarchical structures. ACS Appl. Mater Interfaces 8, 8168–8174. https://doi.org/10.1021/acsami.5b10721 (2016).
Google Scholar
Kaufman, Y. et al. Simple-to-Apply wetting model to predict thermodynamically stable and metastable contact angles on textured/rough/patterned surfaces. J. Phys. Chem. C 121, 5642–5656. https://doi.org/10.1021/acs.jpcc.7b00003 (2017).
Google Scholar
Shi, M., Das, R., Arunachalam, S., & Mishra, H. Unexpected Suppression of Leidenfrost Phenomenon on Superhydrophobic Surfaces. arXiv preprint. https://arxiv.org/pdf/2102.02499.pdf (2021).
Gallo Jr., A., Tavares, F., Das, R. & Mishra, H., How Particle–Particle and Liquid–Particle Interactions Govern the Fate of Evaporating Liquid Marbles. Soft Matter, https://doi.org/10.1039/D1SM00750E (2021)
Ghosh, S. K., Ray Gupta, K., Bhattacharyya, R., Sahu, R. B. & Mandol, S. Improvement of life expectancy of jute based needlepunched geotextiles through bitumen treatment. J. Inst. Eng. India Ser. E 95, 111–121. https://doi.org/10.1007/s40034-014-0036-y (2014).
Google Scholar
Das, R. et al. Proof-of-concept for gas-entrapping membranes derived from water-loving SiO2/Si/SiO2 wafers for green desalination. JoVE https://doi.org/10.3791/60583 (2020).
Google Scholar
Pillai, S. et al. A molecular to macro level assessment of direct contact membrane distillation for separating organics from water. J. Membr. Sci. 608, 118140. https://doi.org/10.1016/j.memsci.2020.118140 (2020).
Google Scholar
Arunachalam, S. et al. Rendering SiO2/Si surfaces omniphobic by carving gas-entrapping microtextures comprising reentrant and doubly reentrant cavities or pillars. JoVE https://doi.org/10.3791/60403 (2020).
Google Scholar
Das, R., Arunachalam, S., Ahmad, Z., Manalastas, E. & Mishra, H. Bio-inspired gas-entrapping membranes (GEMs) derived from common water-wet materials for green desalination. J. Membr. Sci. https://doi.org/10.1016/j.memsci.2019.117185 (2019).
Google Scholar
Gonzalez-Avila, S. R. et al. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). Sci. Adv. 6, eaax6192. https://doi.org/10.1126/sciadv.aax6192 (2020).
Google Scholar
Arunachalam, S., Das, R., Nauruzbayeva, J., Domingues, E. M. & Mishra, H. Assessing omniphobicity by immersion. J. Colloid Interface Sci. 534, 156–162. https://doi.org/10.1016/j.jcis.2018.08.059 (2019).
Google Scholar
Domingues, E. M., Arunachalam, S. & Mishra, H. Doubly reentrant cavities prevent catastrophic wetting transitions on intrinsically wetting surfaces. ACS Appl. Mater. Interface 9, 21532–21538. https://doi.org/10.1021/acsami.7b03526 (2017).
Google Scholar
Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. I. Climate change and food systems. Annu. Rev. Environ. Resour. 37, 195–222. https://doi.org/10.1146/annurev-environ-020411-130608 (2012).
Google Scholar
Jury, W. A. & Vaux, H. The role of science in solving the world’s emerging water problems. Proc. Natl. Acad. Sci. USA 102, 15715–15720. https://doi.org/10.1073/pnas.0506467102 (2005).
Google Scholar
Wexler, A. & Hasegawa, S. Relative humidity–temperature relationships of some saturated salt solutions in the temperature range 0-degree to 50-degrees-C. J. Res. Natl. Bur. Stand. 53, 19–26. https://doi.org/10.6028/jres.053.003 (1954).
Google Scholar
Suma, A., Sreenivasan, K., Singh, A. K. & Radhamani, J. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa. Sci. World J. https://doi.org/10.1155/2013/504141 (2013).
Google Scholar
OriginPro. OriginLab Corporation. https://www.originlab.com/. Northampton, MA, USA (Version 2017).
Source: Ecology - nature.com