Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 2-1–2-31 (2002).
Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003).
Google Scholar
Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. science 308, 67–71 (2005).
Google Scholar
Mahowald, N. M. et al. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 19, https://doi.org/10.1029/2004GB002402 (2005).
Bristow, C. S., Hudson‐Edwards, K. A. & Chappell, A. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL043486 (2010).
Rizzolo, J. A. et al. Soluble iron nutrients in Saharan dust over the central Amazon rainforest. Atmos. Chem. Phys. 17, 2673–2687 (2017).
Google Scholar
Micheels, A., Eronen, J. & Mosbrugger, V. The Late Miocene climate response to a modern Sahara desert. Glob. Planet. Change 67, 193–204 (2009).
Lohmann, G., Butzin, M. & Bickert, T. Effect of vegetation on the Late Miocene ocean circulation. J. Mar. Sci. Eng. 3, 1311–1333 (2015).
Vinoj, V. et al. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat. Geosci. 7, 308–313 (2014).
Google Scholar
Dave, P., Bhushan, M. & Venkataraman, C. Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci. Rep. 7, 1–12 (2017).
Google Scholar
Besnard, G., de Casas, R., Christin, R. & Vargas, P.-A. P. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann. Bot. 104, 143–160 (2009).
Google Scholar
Désamoré, A. et al. Out of Africa: north‐westwards Pleistocene expansions of the heather Erica arborea. J. Biogeogr. 38, 164–176 (2011).
Denk, T., Güner, H. T. & Grimm, G. W. From mesic to arid: Leaf epidermal features suggest preadaptation in Miocene dragon trees (Dracaena). Rev. Palaeobot. Palynol. 200, 211–228 (2014).
Mairal, M., Pokorny, L., Aldasoro, J. J., Alarcón, M. & Sanmartín, I. Ancient vicariance and climate‐driven extinction explain continental‐wide disjunctions in Africa: the case of the Rand Flora genus Canarina (Campanulaceae). Mol. Ecol. 24, 1335–1354 (2015).
Google Scholar
Douady, C. J. et al. The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proc. Natl Acad. Sci. 100, 8325–8330 (2003).
Google Scholar
Carranza, S., Arnold, E., Geniez, P., Roca, J. & Mateo, J. Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Mol. Phylogenet. Evol. 46, 1071–1094 (2008).
Google Scholar
Brito, J. C. et al. Unravelling biodiversity, evolution and threats to conservation in the Sahara‐Sahel. Biol. Rev. 89, 215–231 (2014).
Gonçalves, D. V. et al. The role of climatic cycles and trans-Saharan migration corridors in species diversification: biogeography of Psammophis schokari group in North Africa. Mol. Phylogenet. Evol. 118, 64–74 (2018).
Lado, S., Alves, P. C., Islam, M. Z., Brito, J. C. & Melo-Ferreira, J. The evolutionary history of the Cape hare (Lepus capensis sensu lato): insights for systematics and biogeography. Heredity 123, 634–646 (2019).
Google Scholar
Moutinho, A. F. et al. Evolutionary history of two cryptic species of northern African jerboas. BMC Evolut. Biol. 20, 1–16 (2020).
Solounias, N., Plavcan, J., Quade, J. & Witmer, L. in The Evolution of Neogene Terrestrial Ecosystems in Europe (eds Rook, L. et al.) Ch. 22, 436–453 (Cambridge University Press, 1999).
Thomas, H. Les bovidae (Artiodactyla: Mammalia) du miocene du sous-continent indien, de la peninsule arabique et de l’afrique: Biostratigraphie, biogeographie et ecologie. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 251–299 (1984).
Bibi, F. Mio-Pliocene faunal exchanges and African biogeography: the record of fossil bovids. PLoS ONE 6, e16688 (2011).
Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evolut. Biol. 13, 166 (2013).
Begun, D. R., Nargolwalla, M. C. & Kordos, L. European Miocene hominids and the origin of the African ape and human clade. Evolut. Anthropol. 21, 10–23 (2012).
Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).
Vrba, E. S. On the connections between paleoclimate and evolution. In Paleoclimate and evolution, with emphasis on human origins. (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) p. 24–45 (Yale University Press, New Haven and Lopndon, 1995).
Homke, S., Vergés, J., Garcés, M., Emami, H. & Karpuz, R. Magnetostratigraphy of Miocene–Pliocene Zagros foreland deposits in the front of the Push-e Kush arc (Lurestan Province, Iran). Earth Planet. Sci. Lett. 225, 397–410 (2004).
Google Scholar
Alavi, M. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238 (1994).
Berberian, M. Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241, 193–224 (1995).
Mather, A., Stokes, M., Pirrie, D. & Hartley, R. Generation, transport and preservation of armoured mudballs in an ephemeral gully system. Geomorphology 100, 104–119 (2008).
Bachmann, G. H. & Wang, Y. Armoured mud balls as a result of ephemeral fluvial flood in a humid climate: modern example from Guizhou Province, South China. J. Palaeogeogr. 3, 410–418 (2014).
Vicente, A., Expósito, M., Sanjuan, J. & Martín-Closas, C. Small sized charophyte gyrogonites in the Maastrichtian of Coll de Nargó, Eastern Pyrenees: an adaptation to temporary floodplain ponds. Cretac. Research 57, 443–456 (2016).
Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J. & Amini, A. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics 451, 170–185 (2008).
Emami, H. et al. Structure of the Mountain Front Flexure along the Anaran anticline in the Pusht-e Kuh Arc (NW Zagros, Iran): insights from sand box models. Geol. Soc. Lond. Spec. Publ. 330, 155–178 (2010).
Ewing, S. A. et al. A threshold in soil formation at Earth’s arid–hyperarid transition. Geochim. Cosmochim. Acta 70, 5293–5322 (2006).
Google Scholar
Rosenthal, E., Magaritz, M., Ronen, D. & Roded, R. Origin of nitrates in the Negev Desert, Israel. Appl. Geochem 2, 347–354 (1987).
Google Scholar
Michalski, G., Böhlke, J. & Thiemens, M. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim. Cosmochim. Acta 68, 4023–4038 (2004).
Google Scholar
Mouthereau, F., Lacombe, O. & Vergés, J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532, 27–60 (2012).
Reynolds, R. L. et al. Dust emission from wet and dry playas in the Mojave Desert, USA. Earth Surf. Process. Landf. 32, 1811–1827 (2007).
Cosentino, D. et al. Refining the Mediterranean “Messinian gap” with high-precision U-Pb zircon geochronology, central and northern Italy. Geology 41, 323–326 (2013).
Google Scholar
Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, https://doi.org/10.1029/2004PA001071 (2005).
Tan, N. et al. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth Planet. Sci. Lett. 472, 266–276 (2017).
Google Scholar
Miller, K. G. et al. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012).
Google Scholar
Ohneiser, C. et al. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nat. Commun. 6, 1–10 (2015).
Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 1–14 (2016).
Manzi, V. et al. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25, 315–322 (2013).
Ryan, W. B. Decoding the Mediterranean salinity crisis. Sedimentology 56, 95–136 (2009).
Roveri, M. et al. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Mar. Geol. 352, 25–58 (2014).
Madof, A. S., Bertoni, C. & Lofi, J. Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology 47, 171–174 (2019).
Google Scholar
Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V. Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 290, 183–191 (2010).
Google Scholar
van Baak, C. G. et al. Paratethys response to the Messinian salinity crisis. Earth Sci. Rev. 172, 193–223 (2017).
Böhme, M., Ilg, A. & Winklhofer, M. Late Miocene “washhouse” climate in Europe. Earth Planet. Sci. Lett. 275, 393–401 (2008).
Schuster, M. et al. The age of the Sahara desert. Science 311, 821–821 (2006).
Google Scholar
Böhme, M. et al. Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLoS ONE 12, e0177347 (2017).
Böhme, M., Van Baak, C. G., Prieto, J., Winklhofer, M. & Spassov, N. Late Miocene stratigraphy, palaeoclimate and evolution of the Sandanski Basin (Bulgaria) and the chronology of the Pikermian faunal changes. Glob. Planet. Change 170, 1–19 (2018).
Alijani, B. & Harman, J. R. Synoptic climatology of precipitation in Iran. Ann. Assoc. Am. Geogr. 75, 404–416 (1985).
Perșoiu, A., Ionita, M. & Weiss, H. Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event—a hypothesis. Clim. Past 15, 781–793 (2019).
Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).
Google Scholar
Zhongshi, Z., Wang, H., Guo, Z. & Jiang, D. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 317–331 (2007).
Najafi, M. S., Sarraf, B., Zarrin, A. & Rasouli, A. Climatology of atmospheric circulation patterns of Arabian dust in western Iran. Environ. Monit. Assess. 189, 473 (2017).
van Baak, C. G., Stoica, M., Grothe, A., Aliyeva, E. & Krijgsman, W. Mediterranean-Paratethys connectivity during the Messinian salinity crisis: the Pontian of Azerbaijan. Glob. Planet. Change 141, 63–81 (2016).
Naidina, O. D. & Richards, K. The Akchagylian stage (late Pliocene-early Pleistocene) in the North Caspian region: Pollen evidence for vegetation and climate change in the Urals-Emba region. Quat. Int. 540, 22–37 (2020).
Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. 114, 12888–12893 (2017).
Google Scholar
Colleoni, F., Cherchi, A., Masina, S. & Brierley, C. M. Impact of global SST gradients on the Mediterranean runoff changes across the Plio‐Pleistocene transition. Paleoceanography 30, 751–767 (2015).
Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1–13 (2018).
Google Scholar
White, S. & Ravelo, A. Dampened El Niño in the early Pliocene warm period. Geophys. Res. Lett. 47, e2019GL085504 (2020).
Tozuka, T., Endo, S. & Yamagata, T. Anomalous Walker circulations associated with two flavors of the Indian Ocean Dipole. Geophys. Res. Lett. 43, 5378–5384 (2016).
Annamalai, H., Okajima, H. & Watanabe, M. Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Clim. 20, 3164–3189 (2007).
Nazemosadat, M., Samani, N., Barry, D. & Molaii Niko, M. ENSO forcing on climate change in Iran: precipitation analysis. Iran. J. Sci. Technol. Trans. B 30, 555–565 (2006).
Trauth, M. H. et al. High-and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J. Hum. Evol. 53, 475–486 (2007).
Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl Acad. Sci. 114, 7331–7336 (2017).
Google Scholar
Lebatard, A.-E. et al. Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin. Earth Planet. Sci. Lett. 297, 57–70 (2010).
Google Scholar
Tiedemann, R., et al. Proc. ODP, Sci. Results. 241–277.
Hilgen, F. et al. Integrated stratigraphy and astrochronology of the Messinian GSSP at Oued Akrech (Atlantic Morocco). Earth Planet. Sci. Lett. 182, 237–251 (2000).
Google Scholar
Dupont, L. M. & Leroy, S. A. Steps Toward Drier Climatic Conditions in Northwestern Africa during the Upper Pliocene. Paleoclimate and Evolution with Emphasis on Human Origins 289–298 (Yale University Press, 1995)
Darwin, C. & Bynum, W. F. The Origin of Species by Means of Natural Selection: Or, the Preservation of favored Races in the Struggle for Life (Penguin Harmondsworth, 2009).
Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).
Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. B. & Ogg, G. M. The Geologic Time Scale 2012. (Elsevier, 2012).
Epp, T. et al. Vegetation canopy effects on total and dissolved Cl, Br, F and I concentrations in soil and their fate along the hydrological flow path. Sci. Total Environ. 712, 135473 (2020).
Google Scholar
Dietze, E. & Dietze, M. Grain-size distribution unmixing using the R package EMMAgeo. E&G-Quat. Sci. J. 68, 29–46 (2019).
Andò, S. Gravimetric separation of heavy minerals in sediments and rocks. Minerals 10, 273 (2020).
Al-Juboury, A. I. & Al-Miamary, F. A. Geochemical variations in heavy minerals as provenance indications: application to the Tigris river sand, northern Iraq. J. Mediter. Earth Sci. 1, 33–45 (2009).
Garzanti, E. et al. The Euphrates-Tigris-Karun river system: Provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate. Earth Sci. Rev. 162, 107–128 (2016).
Google Scholar
Philip, G. Mineralogy of the Recent sediments of Tigris and Euphrates rivers and some of the older detrital deposits. J. Sediment. Res. 38, 35–44 (1968).
Skoček, V. & Saadallah, A. Grain-size distribution, carbonate content and heavy minerals in eolian sands, southern desert, Iraq. Sediment. Geol. 8, 29–46 (1972).
Popov, S., Antipov, M., Zastrozhnov, A., Kurina, E. & Pinchuk, T. Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr. Geol. Correl. 18, 200–224 (2010).
Krijgsman, W. et al. Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth Sci. Rev. 188, 1–40 (2019).
van Baak, C. G. et al. Messinian events in the Black Sea. Terra Nova 27, 433–441 (2015).
Green, T., Abdullayev, N., Hossack, J., Riley, G. & Roberts, A. M. Sedimentation and Subsidence in the South Caspian Basin, Azerbaijan vol. 312 (Geological Society, London, Special Publications, 2009) 241–260 (2009).
Abdullayev, N. R., Riley, G. W. & Bowman, A. P. Regional controls on lacustrine sandstone reservoirs: the Pliocene of the South Caspian Basin. (2012).
Trubikhin, V. Paleomagnetic data for the Pontian. Chronostratigraphie und Neostratotypen–Pontien. Chronostratigraphie und Neostratotypen, Zagreb–Beograd. 76–79 (1989).
Van Baak, C. G. et al. A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Glob. Planet. Change 103, 119–134 (2013).
Davis, S. N., Fabryka-Martin, J. T. & Wolfsberg, L. E. Variations of bromide in potable ground water in the United States. Ground Water 42, 902–909 (2004).
Google Scholar
Davis, S. N., Whittemore, D. O. & Fabryka-Martin, J. Uses of chloride/bromide ratios in studies of potable water. Ground Water 36, 338–350 (1998).
Google Scholar
Alcalá, F. J. & Custodio, E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydrol. 359, 189–207 (2008).
Dickson, A. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water 166–187 (ORNL/CDIAC-74, U. S. Department of Energy, 1994).
Tan, H., Ma, H., Li, B., Zhang, X. & Xiao, Y. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chin. Sci. Bull. 55, 3181–3188 (2010).
Google Scholar
Turk, L., Davis, S. & Bingham, C. Hydrogeology of lacustrine sediments, Bonneville Salt Flats, Utah. Econ. Geol. 68, 65–78 (1973).
Google Scholar
Sun, S. et al. Bromine content and Br/Cl molar ratio of halite in a core from Laos: implications for origin and environmental changes. Carbon. Evaporites 34, 1107–1115 (2019).
Google Scholar
Fomba, K. W. et al. Long-term chemical characterization of tropical and marine aerosols at the CVAO: field studies (2007 to 2011). Atmos. Chem. Phys 14, 3917–3971 (2014).
Manö, S. & Andreae, M. O. Emission of methyl bromide from biomass burning. Science 263, 1255–1257 (1994).
Goni, I., Fellman, E. & Edmunds, W. Rainfall geochemistry in the Sahel region of northern Nigeria. Atmos. Environ. 35, 4331–4339 (2001).
Google Scholar
Horst, A. et al. Stable bromine isotopic composition of methyl bromide released from plant matter. Geochim. Cosmochim. Acta 125, 186–195 (2014).
Google Scholar
Helder, R. The absorption of labelled chloride and bromide ions by young intact barley plants. Acta Bot. Neerl. 13, 488–506 (1965).
Bowen, H. J. M. Environmental Chemistry of the Elements (Academic Press, 1979).
Gerritse, R. G. & George, R. J. The role of soil organic matter in the geochemical cycling of chloride and bromide. J. Hydrol. 101, 83–95 (1988).
Google Scholar
Wishkerman, A. et al. Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature. Environ. Sci. Technol. 42, 6837–6842 (2008).
Google Scholar
Delany, A. C., Pollock, W. H. & Shedlovsky, J. P. Tropospheric aerosol—relative contribution of marine and continental components. J. Geophys. Res. 78, 6249–6265 (1973).
Google Scholar
Pérez-Fodich, A. et al. Climate change and tectonic uplift triggered the formation of the Atacama Desert’s giant nitrate deposits. Geology 42, 251–254 (2014).
Reich, M. & Bao, H. M. Nitrate deposits of the Atacama Desert: a marker of long-term hyperaridity. Elements 14, 251–256 (2018).
Google Scholar
Erickson, D. J. III & Duce, R. A. On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14079–14088 (1988).
Murphy, D. M. et al. The distribution of sea-salt aerosol in the global troposphere. Atmos. Chem. Phys. 19, https://doi.org/10.5194/acp-19-4093-2019 (2019).
Walvoord, M. A. et al. A reservoir of nitrate beneath desert soils. Science 302, 1021–1024 (2003).
Google Scholar
Graham, R. C., Hirmas, D. R., Wood, Y. A. & Amrhein, C. Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California. Geology 36, 259–262 (2008).
Google Scholar
Voigt, C., Klipsch, S., Herwartz, D., Chong, G. & Staubwasser, M. The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Glob. Planet. Change 184, 103077 (2020).
Böhlke, J., Ericksen, G. & Revesz, K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. chemical. Chem. Geol. 136, 135–152 (1997).
Jin, Z., Zhu, Y., Li, X., Dong, Y. & An, Z. Soil N retention and nitrate leaching in three types of dunes in the Mu Us desert of China. Sci. Rep. 5, 14222 (2015).
Google Scholar
Ericksen, G. E., Hosterman, J. W. & Amand, P. S. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, USA. Chem. Geol. 67, 85–102 (1988).
Google Scholar
Qin, Y. et al. Massive atmospheric nitrate accumulation in a continental interior desert, northwestern China. Geology 40, 623–626 (2012).
Google Scholar
Lybrand, R. A. et al. Nitrate, perchlorate, and iodate co-occur in coastal and inland deserts on Earth. Chemical. Geology 442, 174–186 (2016).
Google Scholar
Wood, G. in American Association of Stratigraphic Palynologists Foundation vol. 1 29–50 (1996).
Wallace, A. The Geographical Distribution of Animals Vol. I & II (Harper and Brothers, 1876).
Wessel, P. & Luis, J. F. The GMT/MATLAB Toolbox. Geochem. Geophys. Geosyst. 18, 811–823 (2017).
Amante, C. & Eakins, B. ETOPO1 Global Relief Model Converted to PanMap Layer Format (NOAA-National Geophysical Data Center, 2009).
Flint, A. L., Flint, L. E., Curtis, J. A. & Buesch, D. C. A preliminary water balance model for the Tigris and Euphrates river system. US Geological Survey, Water Budget Report (2011).
Source: Ecology - nature.com