in

Neon-green fluorescence in the desert gecko Pachydactylus rangei caused by iridophores

  • 1.

    Sparks, J. S. et al. The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE 9, e83259 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 2.

    Wucherer, M. F. & Michiels, N. K. A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS ONE 7, e37913 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Gruber, D. F. et al. Biofluorescence in catsharks (Scyliorhinidae): fundamental description and relevance for elasmobranch visual ecology. Sci. Rep. 6, 24751 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Gruber, D. F. & Sparks, J. S. First observation of fluorescence in marine turtles. Am. Mus. Novit. 3845, 1–8 (2015).

    Article  Google Scholar 

  • 5.

    Kohler, A. M., Olson, E. R., Martin, J. G. & Anich, P. S. Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). J. Mammal. 100, 21–30 (2019).

    Article  Google Scholar 

  • 6.

    Jeng, M.-L. Biofluorescence in terrestrial animals, with emphasis on fireflies: a review and field observation in Bioluminescence—Analytical Applications and Basic Biology 1–16 (Hirobumi Suzuki, IntechOpen, 2019).

  • 7.

    Evtukh, G. Fluorescence among Fraterculinae subfamily. Pyccкий opнитoлoгичecкий жypнaл 28, 2134–2142 (2019).

    Google Scholar 

  • 8.

    Wilkinson, B. P., Johns, M. E. & Warzybok, P. Fluorescent ornamentation in the Rhinoceros Auklet Cerorhinca monocerata. Ibis 161, 694–698 (2019).

    Article  Google Scholar 

  • 9.

    Arnold, K., Owens, I. P. & Marshall, N. J. Fluorescent signalling in parrots. Science 295, 92 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Barreira, A., Lagorio, M. G., Lijtmaer, D., Lougheed, S. & Tubaro, P. Fluorescent and ultraviolet sexual dichromatism in the blue-winged parrotlet. J. Zool. 288, 135–142 (2012).

    Article  Google Scholar 

  • 11.

    Goutte, S. et al. Intense bone fluorescence reveals hidden patterns in pumpkin toadlets. Sci. Rep. 9, 1–8 (2019).

    CAS  Article  Google Scholar 

  • 12.

    Taboada, C., Brunetti, A. E., Alexandre, C., Lagorio, M. G. & Faivovich, J. Fluorescent frogs: a herpetological perspective. S. Am. J. Herpetol. 12, 1–13 (2017).

    Article  Google Scholar 

  • 13.

    Taboada, C. et al. Naturally occurring fluorescence in frogs. Proc. Nat. Acad. Sci. USA 114, 3672–3677 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Deschepper, P., Jonckheere, B. & Matthys, J. A light in the dark: the discovery of another fluorescent frog in the Costa Rican rainforests. Wilderness Environ. Med. 29, 4212134–2142422 (2018).

    Google Scholar 

  • 15.

    Lamb, J. Y. & Davis, M. P. Salamanders and other amphibians are aglow with biofluorescence. Sci. Rep. 10, 1–7 (2020).

    Article  CAS  Google Scholar 

  • 16.

    Thompson, M. E., Saporito, R., Ruiz-Valderrama, D. H., Medina-Rangel, G. F. & Donnelly, M. A. A field-based survey of fluorescence in tropical tree frogs using an LED UV-B flashlight. Herpetol. Notes 12, 987–990 (2019).

    Google Scholar 

  • 17.

    Gray, R. J. Biofluorescent lateral patterning on the Mossy Bushfrog (Philautus macroscelis): the first report of biofluorescence in a rhacophorid frog. Herpetol. Notes 12, 363–364 (2019).

    Google Scholar 

  • 18.

    Munoz, D. Plethodon cinereus (Eastern Red-backed Salamander) Fluorescence. Herpetol. Rev. 49, 512–513 (2018).

    Google Scholar 

  • 19.

    Tah, M.M.T.-M., Puan, C. L., Chuang, M.-F., Othman, S. N. & Borzée, A. First record of ultraviolet fluorescence in Bent-toed Gecko Cyrtodactylus quadrivirgatus (Gekkonidae: Sauria). Herpetol. Notes 13, 211–212 (2020).

    Google Scholar 

  • 20.

    Sloggett, J. J. Field observations of putative bone-based fluorescence in a gecko. Curr. Zool. 64, 319–320 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Maitland, D. & Hart, A. A fluorescent vertebrate: the Iberian Worm-lizard Blanus cinereus (Amphisbaenidae). Herpetol. Rev. 39, 50 (2008).

    Google Scholar 

  • 23.

    Andrews, K., Reed, S. M. & Masta, S. E. Spiders fluoresce variably across many taxa. Biol. Lett. 3, 265–267 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Macel, M.-L. et al. Sea as a color palette: the ecology and evolution of fluorescence. Zool. Lett. 6, 1–11 (2020).

    Article  Google Scholar 

  • 25.

    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Kloock, C. T., Kubli, A. & Reynolds, R. Ultraviolet light detection: a function of scorpion fluorescence. J. Arachnol. 38, 441–445 (2010).

    Article  Google Scholar 

  • 27.

    Haddock, S. H. & Dunn, C. W. Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Gandía-Herrero, F., García-Carmona, F. & Escribano, J. Botany: floral fluorescence effect. Nature 437, 334 (2005).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 29.

    Mazel, C., Cronin, T., Caldwell, R. & Marshall, N. Fluorescent enhancement of signaling in a mantis shrimp. Science 303, 51 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Lim, M. L., Land, M. F. & Li, D. Sex-specific UV and fluorescence signals in jumping spiders. Science 315, 481 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Kloock, C. T. A comparison of fluorescence in two sympatric scorpion species. J. Photochem. Photobiol. B 91, 132–136 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Michiels, N. K. et al. Red fluorescence in reef fish: a novel signalling mechanism?. BMC Ecol. 8, 1–16 (2008).

    Article  Google Scholar 

  • 33.

    Gerlach, T., Sprenger, D. & Michiels, N. K. Fairy wrasses perceive and respond to their deep red fluorescent coloration. Proc. R. Soc. B 281, 20140787 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Lagorio, M. G., Cordon, G. B. & Iriel, A. Reviewing the relevance of fluorescence in biological systems. Photochem. Photobiol. Sci. 14, 1538–1559 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Bachman, C. H. & Ellis, E. H. Fluorescence of bone. Nature 206, 1328–1331 (1965).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Rebouças, R. et al. Is the conspicuous dorsal coloration of the Atlantic forest pumpkin toadlets aposematic?. Salamandra 55, 39–47 (2019).

    Google Scholar 

  • 37.

    Werner, Y. L. Ecological comments on some gekkonid lizards of the Namib Desert, South West Africa. Modoqua 1977, 157–169 (1977).

    Google Scholar 

  • 38.

    Russell, A. & Bauer, A. Substrate excavation in the Namibian web-footed gecko, Palmatogecko rangei Andersson 1908, and its ecological significance. Trop. Zool. 3, 197–207 (1990).

    Article  Google Scholar 

  • 39.

    Vitt, L. J. & Caldwell, J. P. Herpetology: An Introductory Biology of Amphibians and Reptiles 776 (Academic Press, London, 2013).

    Google Scholar 

  • 40.

    Schmidt, W. J. Die Chromatophoren der Reptilienhaut. Arch. Mikrosk. Anat. 90, 98–259 (1918).

    Article  Google Scholar 

  • 41.

    Szydłowski, P., Madej, J. P. & Mazurkiewicz-Kania, M. Histology and ultrastructure of the integumental chromatophores in tokay gecko (Gekko gecko) (Linnaeus, 1758) skin. Zoomorphology 136, 233–240 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Saenko, S. V., Teyssier, J., Van Der Marel, D. & Milinkovitch, M. C. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biol. 11, 105 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Avallone, B., Tizzano, M., Cerciello, R., Buglione, M. & Fulgione, D. Gross anatomy and ultrastructure of Moorish Gecko, Tarentola mauritanica skin. Tissue Cell 51, 62–67 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Morrison, R. L., Sherbrooke, W. C. & Frost-Mason, S. K. Temperature-sensitive, physiologically active iridophores in the lizard Urosaurus ornatus: an ultrastructural analysis of color change. Copeia 1996, 804–812 (1996).

    Article  Google Scholar 

  • 46.

    Polewski, K., Zinger, D., Trunk, J., Monteleone, D. C. & Sutherland, J. C. Fluorescence of matrix isolated guanine and 7-methylguanine. J. Photochem. Photobiol. B 24, 169–177 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Turrisi, R. et al. Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators. J. Mater. Chem. A 3, 8045–8054 (2015).

    CAS  Article  Google Scholar 

  • 48.

    Suzuki, K. et al. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Szydłowski, P., Madej, J. P. & Mazurkiewicz-Kania, M. Ultrastructure and distribution of chromatophores in the skin of the leopard gecko (Eublepharis macularius). Acta Zool. 97, 370–375 (2016).

    Article  Google Scholar 

  • 50.

    Hibbitts, T. J., Pianka, E. R., Huey, R. B. & Whiting, M. J. Ecology of the common barking gecko (Ptenopus garrulus) in southern Africa. J. Herpetol. 39, 509–515 (2005).

    Article  Google Scholar 

  • 51.

    Olivier, J. Spatial distribution of fog in the Namib. J. Arid Environ. 29, 129–138 (1995).

    ADS  Article  Google Scholar 

  • 52.

    Gottlieb, T. R., Eckardt, F. D., Venter, Z. S. & Cramer, M. D. The contribution of fog to water and nutrient supply to Arthraerua leubnitziae in the central Namib Desert, Namibia. J. Arid Environ. 161, 35–46. https://doi.org/10.1016/j.jaridenv.2018.11.002 (2019).

    ADS  Article  Google Scholar 

  • 53.

    Prötzel, D. D. Palmatogecko—ein sozialer Gecko?. Reptilia 107, 4–5 (2014).

    Google Scholar 

  • 54.

    Nørgaard, T., Henschel, J. R. & Wehner, R. The night-time temporal window of locomotor activity in the Namib Desert long-distance wandering spider, Leucorchestris arenicola. J. Comp. Physiol. A 192, 365–372 (2006).

    Article  Google Scholar 

  • 55.

    Roth, L. S. & Kelber, A. Nocturnal colour vision in geckos. Proc. R. Soc. B 271, 485–487 (2004).

    Article  Google Scholar 

  • 56.

    Pinto, B. J., Nielsen, S. V. & Gamble, T. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards. Mol. Phylogenet. Evol. 141, 106639 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Iriel, A. & Lagorio, M. G. Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling. Photochem. Photobiol. Sci. 9, 342–348 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Richardson, K., Jarett, L. & Finke, E. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208 (1963).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).

    Article  Google Scholar 

  • 62.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).

  • 63.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, Berlin, 2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species