in

New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae

  • 1.

    Fernández-Brime, S., Muggia, L., Maier, S., Grube, M. & Wedin, M. Bacterial communities in an optional lichen symbiosis are determined by substrate, not algal photobionts. FEMS Microbiol. Ecol. 95, fiz012 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Grube, M. et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9, 412–424 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Peksa, O. & Škaloud, P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol. Ecol. 20, 3936–3948 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Řídká, T., Peksa, O., Rai, H., Upreti, D. K. & Škaloud, P. Photobiont diversity in Indian Cladonialichens, with special emphasis on the geographical patterns. In Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology (eds Rai, H. & Upreti, D. K.) 53–71 (Springer, New York, 2014).

    Google Scholar 

  • 6.

    Rolshausen, G. et al. Expanding the mutualistic niche: Parallel symbiont turnover along climatic gradients. Proc. R. Soc. B 287, 1924 (2020).

    Article 

    Google Scholar 

  • 7.

    Kosecka, M. et al. Trentepohlialean algae (Trentepohliales, Ulvophyceae) show preference to selected mycobiont lineages in lichen symbioses. J. Phycol. 56, 979–993 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Muggia, L., Pérez-Ortega, S., Kopun, T., Zellnig, G. & Grube, M. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 114, 463–475 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Vančurová, L., Muggia, L., Peksa, O., Řídká, T. & Škaloud, P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (lichenized Ascomycota). Mol. Ecol. 27, 3016–3033 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Beck, A., Kasalicky, T. & Rambold, G. Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol. 153, 317–326 (2002).

    Article 

    Google Scholar 

  • 11.

    Nelsen, M. P. & Gargas, A. Actin type intron sequences increase phylogenetic resolution: An example from Asterochloris (Chlorophyta: Trebouxiophyceae). Lichenologist 38, 435–440 (2006).

    Article 

    Google Scholar 

  • 12.

    Nelsen, M. P. & Gargas, A. Dissociation and horizontal transmission of co-dispersed lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol. 177, 264–275 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Škaloud, P. & Peksa, O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris. Mol. Phylogenet. Evol. 54, 36–46 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Škaloud, P., Steinová, J., Řídká, T., Vančurová, L. & Peksa, O. Assembling the challenging puzzle of algal biodiversity: Species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). J. Phycol. 51, 507–527 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Steinová, J., Škaloud, P., Yahr, R., Bestová, H. & Muggia, L. Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Mol. Phylogenet. Evol. 134, 226–237 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Vančurová, L., Peksa, O., Němcová, Y. & Škaloud, P. Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa 219, 118–132 (2015).

    Article 

    Google Scholar 

  • 17.

    Vančurová, L. et al. Symbiosis between river and dry lands: Phycobiont dynamics on river gravel bars. Algal Res. 51, 102062. https://doi.org/10.1016/j.algal.2020.102062 (2020).

    Article 

    Google Scholar 

  • 18.

    Yahr, R., Vilgalys, R. & Depriest, P. T. Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol. Ecol. 13, 3367–3378 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Tschermak-Woess, E. Asterochloris phycobiontica gen. et spec. nov., der Phycobiont der Flechte Varicellaria carneonivea. Plant Syst. Evol. 135, 279–294 (1980).

    Article 

    Google Scholar 

  • 20.

    Moya, P. et al. Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. Nov. from Mediterranean and Canary Islands ecosystems. Int. J. Syst. Evol. Microbiol. 65(6), 1838–1854 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Kim, J. I. et al. Asterochloris sejongensis sp. nov. (Trebouxiophyceae, Chlorophyta) from King George Island, Antarctica. Phytotaxa 295, 60–70 (2017).

    Article 

    Google Scholar 

  • 22.

    Kim, J. I. et al. Taxonomic study of three new Antarctic Asterochloris(Trebouxio-phyceae) based on morphological and molecular data. Korean Soc. Phycol. 35(1), 17–32 (2020).

    CAS 

    Google Scholar 

  • 23.

    Pino-Bodas, R. & Stenroos, S. Global biodiversity patterns of the photobionts associated with the genus Cladonia (Lecanorales, Ascomycota). Microb. Ecol. https://doi.org/10.1007/s00248-020-01633-3 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Fernandez-Mendoza, F. et al. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol. Ecol. 20, 1208–1232 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Helms, G. Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Göttingen, Doctoral thesis. Germany: Georg-August Universität Göttingen (2003).

  • 26.

    Kroken, S. & Taylor, J. W. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103, 645–660 (2000).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Leavitt, S. D. et al. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen- forming family Parmeliaceae (Ascomycota). Mol. Ecol. 24, 3779–3797 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Magain, N., Miadlikowska, J., Goffinet, B., Sérusiaux, E. & Lutzoni, F. Macroevolution of Specificity in Cyanolichens of the Genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota). Syst. Biol. 66, 74–99 (2016).

    Google Scholar 

  • 29.

    Mark, K. et al. Contrasting cooccurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytol. 227, 1362–1375 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    O’Brien, H. E., Miadlikowska, J. & Lutzoni, F. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 198, 557–566 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Piercey-Normore, M. D. & DePriest, P. T. Algal switching among lichen symbionts. Am. J. Bot. 88, 1490–1498 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Yahr, R., Vilgalys, R. & DePriest, P. T. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 171, 847–860 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Muggia, L. et al. The symbiotic playground of lichen thalli—A highly flexible photobiont association in rock inhabiting lichens. FEMS Microbiol. Ecol. 85, 313–323 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Sadowska-Deś, A. D. et al. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol. Phylogenet. Evol. 76, 202–210 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Wirtz, N. et al. Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol. 160, 177–183 (2003).

    Article 

    Google Scholar 

  • 36.

    Ertz, D., Guzow-Krzemińska, B., Thor, G., Łubek, A. & Kukwa, M. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep. 8, 4952 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Marshall, W. A. & Chalmers, M. O. Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20, 585–594 (1997).

    Article 

    Google Scholar 

  • 38.

    Printzen, C., Domaschke, S., Fernandez-Mendoza, F. & Perez-Ortega, S. Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6, 33–53 (2013).

    Article 

    Google Scholar 

  • 39.

    Pardo-De la Hoz, C. J. et al. Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genus Peltigera. Front. Microbiol. 9, 2770–2770 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Singh, G. et al. Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytol. 214, 317–329 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Cordeiro, L. M. C. et al. Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiol. Ecol. 54, 381–390 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Pullaiah, T. (ed.) (2019) Biodiversity in Bolivia in: Global Biodiversity Volume 4: Selected Countries in the Americas and Australia, Chapter 1. 1–574 (Apple Academic Press, 2001).

  • 43.

    Ibisch, P. L. & Mérida, G. Biodiversity: the richness of Bolivia. State of knowledge and conservation. 1–638 (Ministry of Sustainable Development, Editorial FAN, 2004).

  • 44.

    Werth, S. & Sork, V. L. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am. J. Bot. 101, 1127–1140 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Rolshausen, G., Dal Grande, F., Sadowska-Deś, A. D., Otte, J. & Schmitt, I. Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualistmediated niche expansions. Ecography 41, 1380–1392 (2018).

    Article 

    Google Scholar 

  • 46.

    Blaha, J., Baloch, E. & Grube, M. High photobiont diversity insymbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota). Biol. J. Linn. Soc. 88, 283–293 (2006).

    Article 

    Google Scholar 

  • 47.

    Vargas Castillo, R. & Beck, A. Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol. 116, 665–676 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Bačkor, M., Klemová, K., Bačkorová, M. & Ivanova, V. Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont Trebouxia erici. J. Chem. Ecol. 36, 405–411 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Galloway, D. J. Lichen biogeography. In: Nash T. H. (ed.) Lichen Biology, 315–335 (Cambridge University Press, 2008).

  • 50.

    Dal Grande, F. et al. Environment and host identity structure communities of green algal symbionts in lichens. New Phytol. 217, 277–289 (2017).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Dal Grande, F., Widmer, I., Wagner, H. H. & Scheidegger, C. Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol. Ecol. 21, 3159–3172 (2012).

    Article 

    Google Scholar 

  • 52.

    Otálora, M. A. G. et al. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol. Phylogenet. Evol. 56, 1089–1095 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Ruprecht, U., Fernández-Mendoza, F., Türk, R. & Fryday, A. High levels of endemism and local differentiation in the fungal and algal symbionts of saxicolous lecideoid lichens along a latitudinal gradient in southern South America. Lichenologist 52, 287–303 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Ahti, T., Cladoniaceae in Flora Neotropica Monograph 78. 2–362 (New York Botanical Garden Press, 2000).

  • 55.

    Parnmen, S., Leavitt, S. D., Rangsiruji, A. & Lumbsch, H. T. Identification of species in the Cladia aggregata group using DNA barcoding (Ascomycota: Lecanorales). Phytotaxa 115, 1–14 (2013).

    Article 

    Google Scholar 

  • 56.

    Guzow-Krzemińska, B. et al. New species and records of lichens from Bolivia. Phytotaxa 397, 257–279 (2019).

    Article 

    Google Scholar 

  • 57.

    Sipman, H. J. M. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).

    Google Scholar 

  • 58.

    Saag, L., Saag, A. & Randlane, T. World survey of the genus Lepraria (Stereocaulaceae, lichenized Ascomycota). Lichenologist 41, 25–60 (2009).

    Article 

    Google Scholar 

  • 59.

    Guzow-Krzemińska, B. et al. Phylogenetic placement of Lepraria cryptovouauxii sp. nov. (Lecanorales, Lecanoromycetes, Ascomycota) with notes on other Lepraria species from South America. MycoKeys 53, 1–22 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens. 1–101 (British Lichen Society, 2001).

  • 61.

    Cubero, O. F., Crespo, A., Fatehi, J. & Bridge, P. D. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 216, 243–249 (1999).

    CAS 
    Article 

    Google Scholar 

  • 62.

    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 345–322 (Academic Press, 1990).

  • 63.

    Sherwood, A. R., Garbary, D. J. & Sheath, R. G. Assessing the phylogenetic position of the Prasiolales (Chlorophyta) using rbcL and 18S rRNA gene sequence data. Phycologia 39, 139–146 (2000).

    Article 

    Google Scholar 

  • 64.

    Nelsen, M. P., Rivas Plata, E., Andrew, C. J., Lücking, R. & Lumbsch, H. T. Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. J. Phycol. 47, 282–290 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    Widmer, I., Dal Grande, F., Cornejo, C. & Scheidegger, C. Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal Biol. 114, 538–544 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Okonechnikov, K., Golosova, O. & Fursov, M. UGENE team. Unipro GENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE): 1–8 (2010).

  • 74.

    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).

    Google Scholar 

  • 75.

    Rambaut, A. FigTreev1.4.2. Retrieved from: http://tree.bio.ed.ac.uk/software/figtree/ (2006–2014).

  • 76.

    Oksanen, et al., vegan: Community ecology package manual. Retrieved from https://cran.rproject.org/package=vegan (2017).

  • 77.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 78.

    Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85, 1826–1832 (2004).

    Article 

    Google Scholar 

  • 79.

    Lefeuvre, P. BoSSA: A bunch of structure and sequence analysis manual. Retrieved from https://cran.r-project.org/package=BoSSA (2018).

  • 80.

    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Article 

    Google Scholar 

  • 81.

    Stenroos, S., Pino-Bodas, R., Hyvönen, J., Lumbsch, T. H. & Ahti, T. Phylogeny of family Cladoniaceae (Lecanoromycetes, Ascomycota) based on sequences of multiple loci. Cladistics 35, 351–384 (2019).

    Article 

    Google Scholar 

  • 82.

    R Core Team. R: A Language and Environment for Statistical Computing.

  • 83.

    https://www.R-project.org/ (2017).

  • 84.

    RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/ (2018).

  • 85.

    Aktas, C. Manipulating DNA Sequences and Estimating Unambiguous Haplotype Network with Statistical Parsimony. Retrieved from https://CRAN.R project.org/package=haplotypes (2020).

  • 86.

    Piel, W. H., Chan, L., Dominus, M. J., Ruan, J., Vos, R. A., and V. Tannen. TreeBASE v. 2: A Database of Phylogenetic Knowledge. In: e-BioSphere (2009)


  • Source: Ecology - nature.com

    The serotonin transporter gene and female personality variation in a free-living passerine

    Keeping humanity central to solving climate change