Fernández-Brime, S., Muggia, L., Maier, S., Grube, M. & Wedin, M. Bacterial communities in an optional lichen symbiosis are determined by substrate, not algal photobionts. FEMS Microbiol. Ecol. 95, fiz012 (2019).
Google Scholar
Grube, M. et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9, 412–424 (2015).
Google Scholar
Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492 (2016).
Google Scholar
Peksa, O. & Škaloud, P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol. Ecol. 20, 3936–3948 (2011).
Google Scholar
Řídká, T., Peksa, O., Rai, H., Upreti, D. K. & Škaloud, P. Photobiont diversity in Indian Cladonialichens, with special emphasis on the geographical patterns. In Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology (eds Rai, H. & Upreti, D. K.) 53–71 (Springer, New York, 2014).
Rolshausen, G. et al. Expanding the mutualistic niche: Parallel symbiont turnover along climatic gradients. Proc. R. Soc. B 287, 1924 (2020).
Google Scholar
Kosecka, M. et al. Trentepohlialean algae (Trentepohliales, Ulvophyceae) show preference to selected mycobiont lineages in lichen symbioses. J. Phycol. 56, 979–993 (2020).
Google Scholar
Muggia, L., Pérez-Ortega, S., Kopun, T., Zellnig, G. & Grube, M. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 114, 463–475 (2014).
Google Scholar
Vančurová, L., Muggia, L., Peksa, O., Řídká, T. & Škaloud, P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (lichenized Ascomycota). Mol. Ecol. 27, 3016–3033 (2018).
Google Scholar
Beck, A., Kasalicky, T. & Rambold, G. Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol. 153, 317–326 (2002).
Google Scholar
Nelsen, M. P. & Gargas, A. Actin type intron sequences increase phylogenetic resolution: An example from Asterochloris (Chlorophyta: Trebouxiophyceae). Lichenologist 38, 435–440 (2006).
Google Scholar
Nelsen, M. P. & Gargas, A. Dissociation and horizontal transmission of co-dispersed lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol. 177, 264–275 (2008).
Google Scholar
Škaloud, P. & Peksa, O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris. Mol. Phylogenet. Evol. 54, 36–46 (2010).
Google Scholar
Škaloud, P., Steinová, J., Řídká, T., Vančurová, L. & Peksa, O. Assembling the challenging puzzle of algal biodiversity: Species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). J. Phycol. 51, 507–527 (2015).
Google Scholar
Steinová, J., Škaloud, P., Yahr, R., Bestová, H. & Muggia, L. Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Mol. Phylogenet. Evol. 134, 226–237 (2019).
Google Scholar
Vančurová, L., Peksa, O., Němcová, Y. & Škaloud, P. Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa 219, 118–132 (2015).
Google Scholar
Vančurová, L. et al. Symbiosis between river and dry lands: Phycobiont dynamics on river gravel bars. Algal Res. 51, 102062. https://doi.org/10.1016/j.algal.2020.102062 (2020).
Google Scholar
Yahr, R., Vilgalys, R. & Depriest, P. T. Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol. Ecol. 13, 3367–3378 (2004).
Google Scholar
Tschermak-Woess, E. Asterochloris phycobiontica gen. et spec. nov., der Phycobiont der Flechte Varicellaria carneonivea. Plant Syst. Evol. 135, 279–294 (1980).
Google Scholar
Moya, P. et al. Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. Nov. from Mediterranean and Canary Islands ecosystems. Int. J. Syst. Evol. Microbiol. 65(6), 1838–1854 (2015).
Google Scholar
Kim, J. I. et al. Asterochloris sejongensis sp. nov. (Trebouxiophyceae, Chlorophyta) from King George Island, Antarctica. Phytotaxa 295, 60–70 (2017).
Google Scholar
Kim, J. I. et al. Taxonomic study of three new Antarctic Asterochloris(Trebouxio-phyceae) based on morphological and molecular data. Korean Soc. Phycol. 35(1), 17–32 (2020).
Google Scholar
Pino-Bodas, R. & Stenroos, S. Global biodiversity patterns of the photobionts associated with the genus Cladonia (Lecanorales, Ascomycota). Microb. Ecol. https://doi.org/10.1007/s00248-020-01633-3 (2020).
Google Scholar
Fernandez-Mendoza, F. et al. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol. Ecol. 20, 1208–1232 (2011).
Google Scholar
Helms, G. Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Göttingen, Doctoral thesis. Germany: Georg-August Universität Göttingen (2003).
Kroken, S. & Taylor, J. W. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103, 645–660 (2000).
Google Scholar
Leavitt, S. D. et al. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen- forming family Parmeliaceae (Ascomycota). Mol. Ecol. 24, 3779–3797 (2015).
Google Scholar
Magain, N., Miadlikowska, J., Goffinet, B., Sérusiaux, E. & Lutzoni, F. Macroevolution of Specificity in Cyanolichens of the Genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota). Syst. Biol. 66, 74–99 (2016).
Mark, K. et al. Contrasting cooccurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytol. 227, 1362–1375 (2020).
Google Scholar
O’Brien, H. E., Miadlikowska, J. & Lutzoni, F. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 198, 557–566 (2013).
Google Scholar
Piercey-Normore, M. D. & DePriest, P. T. Algal switching among lichen symbionts. Am. J. Bot. 88, 1490–1498 (2001).
Google Scholar
Yahr, R., Vilgalys, R. & DePriest, P. T. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 171, 847–860 (2006).
Google Scholar
Muggia, L. et al. The symbiotic playground of lichen thalli—A highly flexible photobiont association in rock inhabiting lichens. FEMS Microbiol. Ecol. 85, 313–323 (2013).
Google Scholar
Sadowska-Deś, A. D. et al. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol. Phylogenet. Evol. 76, 202–210 (2014).
Google Scholar
Wirtz, N. et al. Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol. 160, 177–183 (2003).
Google Scholar
Ertz, D., Guzow-Krzemińska, B., Thor, G., Łubek, A. & Kukwa, M. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep. 8, 4952 (2018).
Google Scholar
Marshall, W. A. & Chalmers, M. O. Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20, 585–594 (1997).
Google Scholar
Printzen, C., Domaschke, S., Fernandez-Mendoza, F. & Perez-Ortega, S. Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6, 33–53 (2013).
Google Scholar
Pardo-De la Hoz, C. J. et al. Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genus Peltigera. Front. Microbiol. 9, 2770–2770 (2018).
Google Scholar
Singh, G. et al. Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytol. 214, 317–329 (2017).
Google Scholar
Cordeiro, L. M. C. et al. Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiol. Ecol. 54, 381–390 (2005).
Google Scholar
Pullaiah, T. (ed.) (2019) Biodiversity in Bolivia in: Global Biodiversity Volume 4: Selected Countries in the Americas and Australia, Chapter 1. 1–574 (Apple Academic Press, 2001).
Ibisch, P. L. & Mérida, G. Biodiversity: the richness of Bolivia. State of knowledge and conservation. 1–638 (Ministry of Sustainable Development, Editorial FAN, 2004).
Werth, S. & Sork, V. L. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am. J. Bot. 101, 1127–1140 (2014).
Google Scholar
Rolshausen, G., Dal Grande, F., Sadowska-Deś, A. D., Otte, J. & Schmitt, I. Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualistmediated niche expansions. Ecography 41, 1380–1392 (2018).
Google Scholar
Blaha, J., Baloch, E. & Grube, M. High photobiont diversity insymbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota). Biol. J. Linn. Soc. 88, 283–293 (2006).
Google Scholar
Vargas Castillo, R. & Beck, A. Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol. 116, 665–676 (2012).
Google Scholar
Bačkor, M., Klemová, K., Bačkorová, M. & Ivanova, V. Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont Trebouxia erici. J. Chem. Ecol. 36, 405–411 (2010).
Google Scholar
Galloway, D. J. Lichen biogeography. In: Nash T. H. (ed.) Lichen Biology, 315–335 (Cambridge University Press, 2008).
Dal Grande, F. et al. Environment and host identity structure communities of green algal symbionts in lichens. New Phytol. 217, 277–289 (2017).
Google Scholar
Dal Grande, F., Widmer, I., Wagner, H. H. & Scheidegger, C. Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol. Ecol. 21, 3159–3172 (2012).
Google Scholar
Otálora, M. A. G. et al. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol. Phylogenet. Evol. 56, 1089–1095 (2010).
Google Scholar
Ruprecht, U., Fernández-Mendoza, F., Türk, R. & Fryday, A. High levels of endemism and local differentiation in the fungal and algal symbionts of saxicolous lecideoid lichens along a latitudinal gradient in southern South America. Lichenologist 52, 287–303 (2020).
Google Scholar
Ahti, T., Cladoniaceae in Flora Neotropica Monograph 78. 2–362 (New York Botanical Garden Press, 2000).
Parnmen, S., Leavitt, S. D., Rangsiruji, A. & Lumbsch, H. T. Identification of species in the Cladia aggregata group using DNA barcoding (Ascomycota: Lecanorales). Phytotaxa 115, 1–14 (2013).
Google Scholar
Guzow-Krzemińska, B. et al. New species and records of lichens from Bolivia. Phytotaxa 397, 257–279 (2019).
Google Scholar
Sipman, H. J. M. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).
Saag, L., Saag, A. & Randlane, T. World survey of the genus Lepraria (Stereocaulaceae, lichenized Ascomycota). Lichenologist 41, 25–60 (2009).
Google Scholar
Guzow-Krzemińska, B. et al. Phylogenetic placement of Lepraria cryptovouauxii sp. nov. (Lecanorales, Lecanoromycetes, Ascomycota) with notes on other Lepraria species from South America. MycoKeys 53, 1–22 (2019).
Google Scholar
Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens. 1–101 (British Lichen Society, 2001).
Cubero, O. F., Crespo, A., Fatehi, J. & Bridge, P. D. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 216, 243–249 (1999).
Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 345–322 (Academic Press, 1990).
Sherwood, A. R., Garbary, D. J. & Sheath, R. G. Assessing the phylogenetic position of the Prasiolales (Chlorophyta) using rbcL and 18S rRNA gene sequence data. Phycologia 39, 139–146 (2000).
Google Scholar
Nelsen, M. P., Rivas Plata, E., Andrew, C. J., Lücking, R. & Lumbsch, H. T. Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. J. Phycol. 47, 282–290 (2011).
Google Scholar
Widmer, I., Dal Grande, F., Cornejo, C. & Scheidegger, C. Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal Biol. 114, 538–544 (2010).
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
Google Scholar
Okonechnikov, K., Golosova, O. & Fursov, M. UGENE team. Unipro GENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).
Google Scholar
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).
Google Scholar
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE): 1–8 (2010).
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
Rambaut, A. FigTreev1.4.2. Retrieved from: http://tree.bio.ed.ac.uk/software/figtree/ (2006–2014).
Oksanen, et al., vegan: Community ecology package manual. Retrieved from https://cran.rproject.org/package=vegan (2017).
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85, 1826–1832 (2004).
Google Scholar
Lefeuvre, P. BoSSA: A bunch of structure and sequence analysis manual. Retrieved from https://cran.r-project.org/package=BoSSA (2018).
McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).
Google Scholar
Stenroos, S., Pino-Bodas, R., Hyvönen, J., Lumbsch, T. H. & Ahti, T. Phylogeny of family Cladoniaceae (Lecanoromycetes, Ascomycota) based on sequences of multiple loci. Cladistics 35, 351–384 (2019).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing.
https://www.R-project.org/ (2017).
RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/ (2018).
Aktas, C. Manipulating DNA Sequences and Estimating Unambiguous Haplotype Network with Statistical Parsimony. Retrieved from https://CRAN.R project.org/package=haplotypes (2020).
Piel, W. H., Chan, L., Dominus, M. J., Ruan, J., Vos, R. A., and V. Tannen. TreeBASE v. 2: A Database of Phylogenetic Knowledge. In: e-BioSphere (2009)
Source: Ecology - nature.com