in

Niche specificity and functional diversity of the bacterial communities associated with Ginkgo biloba and Panax quinquefolius

  • 1.

    Hardoim, P. R. et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).

    Article 

    Google Scholar 

  • 2.

    Zhang, H. W., Song, Y. C. & Tan, R. X. Biology and chemistry of endophytes. Nat. Prod. Rep. 23, 753–771 (2006).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Köberl, M., Schmidt, R., Ramadan, E. M., Bauer, R. & Berg, G. The microbiome of medicinal plants: Diversity and importance for plant growth, quality and health. Front. Microbiol. 4, 400 (2013).

    Article 

    Google Scholar 

  • 4.

    Soto, M. J., Domínguez-Ferreras, A., Pérez-Mendoza, D., Sanjuán, J. & Olivares, J. Mutualism versus pathogenesis: The give-and-take in plant–bacteria interactions. Cell. Microbiol. 11, 381–388 (2009).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Leff, J. W., Del Tredici, P., Friedman, W. E. & Fierer, N. Spatial structuring of bacterial communities within individual Ginkgo biloba trees. Environ. Microbiol. 17, 2352–2361. https://doi.org/10.1111/1462-2920.12695 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Berg, G., Rybakova, D., Grube, M. & Köberl, M. The plant microbiome explored: Implications for experimental botany. J. Exp. Bot. 67, 995–1002. https://doi.org/10.1093/jxb/erv466 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Cregger, M. A. et al. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31. https://doi.org/10.1186/s40168-018-0413-8 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Wang, Y., Liu, Y., Wu, Q., Yao, X. & Cheng, Z. Rapid and sensitive determination of major active ingredients and toxic components in Ginkgo biloba leaves extract (EGb 761) by a validated UPLC–MS-MS method. J. Chromatogr. Sci. 55, 459–464. https://doi.org/10.1093/chromsci/bmw206 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Mesquita, T. R. R. et al. Cardioprotective action of Ginkgo biloba extract against sustained β-adrenergic stimulation occurs via activation of M2/NO pathway. Front. Pharmacol. 8, 220. https://doi.org/10.3389/fphar.2017.00220 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Woelk, H., Arnoldt, K. H., Kieser, M. & Hoerr, R. Ginkgo biloba special extract EGb 761® in generalized anxiety disorder and adjustment disorder with anxious mood: A randomized, double-blind, placebo-controlled trial. J. Psychiatr. Res. 41, 472–480. https://doi.org/10.1016/j.jpsychires.2006.05.004 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Rojas, P., Montes, P., Rojas, C., Serrano-Garcia, N. & Rojas-Castaneda, J. C. Effect of a phytopharmaceutical medicine, Ginko biloba extract 761, in an animal model of Parkinson’s disease: Therapeutic perspectives. Nutrition 28, 1081–1088. https://doi.org/10.1016/j.nut.2012.03.007 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Tan, M.-S. et al. Efficacy and adverse effects of Ginkgo biloba for cognitive impairment and dementia: A systematic review and meta-analysis. J. Alzheimer’s Dis. 43, 589–603 (2015).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Kennedy, D. O., Jackson, P. A., Haskell, C. F. & Scholey, A. B. Modulation of cognitive performance following single doses of 120 mg Ginkgo biloba extract administered to healthy young volunteers. Hum. Psychopharm. Clin. 22, 559–566. https://doi.org/10.1002/hup.885 (2007).

    Article 

    Google Scholar 

  • 14.

    Yao, Z.-X., Han, Z., Drieu, K. & Papadopoulos, V. Ginkgo biloba extract (Egb 761) inhibits β-amyloid production by lowering free cholesterol levels. J. Nutr. Biochem. 15, 749–756. https://doi.org/10.1016/j.jnutbio.2004.06.008 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Chen, D., Sun, S., Cai, D. & Kong, G. Induction of mitochondrial-dependent apoptosis in T24 cells by a selenium (Se)-containing polysaccharide from Ginkgo biloba L. leaves. Int. J. Biol. Macromol. 101, 126–130 (2017).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Hamdoun, S. & Efferth, T. Ginkgolic acids inhibit migration in breast cancer cells by inhibition of NEMO sumoylation and NF-κB activity. Oncotarget 8, 35103 (2017).

    Article 

    Google Scholar 

  • 17.

    Fei, R. et al. Purified polysaccharide from Ginkgo biloba leaves inhibits P-selectin-mediated leucocyte adhesion and inflammation. Acta Pharmacol. Sin. 29, 499–506 (2008).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Mahadevan, S. & Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci. 73, R14–R19 (2008).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Zimmermann, M., Colciaghi, F., Cattabeni, F. & Di Luca, M. Ginkgo biloba extract: From molecular mechanisms to the treatment of Alzheimer’s disease. Cell. Mol. Biol. 48, 613–623 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    van Beek, T. A. & Montoro, P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 1216, 2002–2032 (2009).

    Article 

    Google Scholar 

  • 21.

    Lu, X. et al. Combining metabolic profiling and gene expression analysis to reveal the biosynthesis site and transport of ginkgolides in Ginkgo biloba L.. Front. Plant Sci. 8, 872. https://doi.org/10.3389/fpls.2017.00872 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Mancuso, C. & Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol. 107, 362–372 (2017).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Karmazyn, M., Moey, M. & Gan, X. T. Therapeutic potential of Ginseng in the management of cardiovascular disorders. Drugs 71, 1989–2008. https://doi.org/10.2165/11594300-000000000-00000 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Predy, G. N. et al. Efficacy of an extract of North American ginseng containing poly-furanosyl-pyranosyl-saccharides for preventing upper respiratory tract infections: A randomized controlled trial. Can. Med. Assoc. J. 173, 1043–1048. https://doi.org/10.1503/cmaj.1041470 (2005).

    Article 

    Google Scholar 

  • 25.

    Yuan, C.-S., Wang, C.-Z., Wicks, S. M. & Qi, L.-W. Chemical and pharmacological studies of saponins with a focus on American ginseng. J. Ginseng Res. 34, 160 (2010).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Yang, W.-Z., Hu, Y., Wu, W.-Y., Ye, M. & Guo, D.-A. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry 106, 7–24. https://doi.org/10.1016/j.phytochem.2014.07.012 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Solieri, L., Dakal, T. C. & Giudici, P. Next-generation sequencing and its potential impact on food microbial genomics. Ann. Microbiol. 63, 21–37 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Ercolini, D. High-throughput sequencing and metagenomics: Moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79, 3148–3155 (2013).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31 (2010).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: Genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Robinson, R. J. et al. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405, 381–396. https://doi.org/10.1007/s11104-015-2495-4 (2016).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol 10, 828–840. https://doi.org/10.1038/nrmicro2910 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Dasgupta, M. G. et al. Diversity of bacterial endophyte in Eucalyptus clones and their implications in water stress tolerance. Microbiol. Res. 241, 126579. https://doi.org/10.1016/j.micres.2020.126579 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390. https://doi.org/10.1038/ismej.2011.192 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W. & Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677. https://doi.org/10.1128/aem.70.5.2667-2677.2004 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. Isme J. 6, 1812–1822. https://doi.org/10.1038/ismej.2012.32 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95. https://doi.org/10.1038/nature11336 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Kielak, A. M., Cipriano, M. A. P. & Kuramae, E. E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 198, 987–993. https://doi.org/10.1007/s00203-016-1260-2 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Fuerst, J. A. & Sagulenko, E. Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol 9, 403–413. https://doi.org/10.1038/nrmicro2578 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Wiegand, S., Jogler, M. & Jogler, C. On the maverick planctomycetes. FEMS Microbiol. Rev. 42, 739–760. https://doi.org/10.1093/femsre/fuy029 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Kim, H. et al. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736. https://doi.org/10.1111/j.1365-2672.1998.00586.x (1998).

    Article 

    Google Scholar 

  • 42.

    Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. 106, 16428–16433. https://doi.org/10.1073/pnas.0905240106 (2009).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Kampfer, P., Busse, H. J., McInroy, J. A. & Glaeser, S. P. Sphingomonas zeae sp nov., isolated from the stem of Zea mays. Int. J. Syst. Evol. Microbiol. 65, 2542–2548. https://doi.org/10.1099/ijs.0.000298 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Xie, C.-H. & Yokota, A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56, 889–893. https://doi.org/10.1099/ijs.0.64056-0 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Videira, S. S., De Araujo, J. L. S., Da Silva Rodrigues, L., Baldani, V. L. D. & Baldani, J. I. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol. Lett. 293, 11–19. https://doi.org/10.1111/j.1574-6968.2008.01475.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210. https://doi.org/10.1128/aem.00133-11 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Khan, A. L. et al. Bacterial endophyte Sphingomonas sp LK11 produces gibberellins and IAA and promotes tomato plant growth. J. Microbiol. 52, 689–695. https://doi.org/10.1007/s12275-014-4002-7 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Asaf, S., Numan, M., Khan, A. L. & Al-Harrasi, A. Sphingomonas: From diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 40, 138–152. https://doi.org/10.1080/07388551.2019.1709793 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Ali, A. et al. Biotransformation of benzoin by Sphingomonas sp. LK11 and ameliorative effects on growth of Cucumis sativus. Arch. Microbiol. 201, 591–601. https://doi.org/10.1007/s00203-019-01623-1 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Chhetri, G., Kim, J., Kim, I., Kim, H. & Seo, T. Hymenobacter setariae sp. nov., isolated from the ubiquitous weedy grass Setaria viridis. Int. J. Syst. Evol. Microbiol. 70, 3724–3730. https://doi.org/10.1099/ijsem.0.004226 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Dai, Y. et al. Wheat-associated microbiota and their correlation with stripe rust reaction. J. Appl. Microbiol. 128, 544–555. https://doi.org/10.1111/jam.14486 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Buczolits, S. et al. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp nov. Int. J. Syst. Evol. Microbiol. 52, 445–456. https://doi.org/10.1099/00207713-52-2-445 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Su, S. Y. et al. Hymenobacter kanuolensis sp nov., a novel radiation-resistant bacterium. Int. J. Syst. Evol. Microbiol. 64, 2108–2112. https://doi.org/10.1099/ijs.0.051680-0 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Dimitrijevic, S. et al. Plant growth-promoting bacteria elevate the nutritional and functional properties of black cumin and flaxseed fixed oil. J. Sci. Food Agric. 98, 1584–1590. https://doi.org/10.1002/jsfa.8631 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Yang, R. X., Fan, X. J., Cai, X. Q. & Hu, F. P. The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper phytophthora blight. Biol. Control 85, 59–67. https://doi.org/10.1016/j.biocontrol.2014.09.013 (2015).

    Article 

    Google Scholar 

  • 56.

    Islam, M. N., Choi, J. & Baek, K. H. Control of foodborne pathogenic bacteria by endophytic bacteria isolated from Ginkgo biloba L. Foodborne Pathog. Dis. 16, 661–670. https://doi.org/10.1089/fpd.2018.2496 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Datta, S. et al. Endophytic bacteria in xenobiotic degradation In Microbial endophytes (eds. Kumar, A. & Singh, V. K.) 125–156 (Woodhead Publishing, 2020).

  • 58.

    Newmaster, S. G., Grguric, M., Shanmughanandhan, D., Ramalingam, S. & Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 11, 222 (2013).

    Article 

    Google Scholar 

  • 59.

    Gao, Z. et al. Derivative technology of DNA barcoding (Nucleotide Signature and SNP Double Peak methods) detects adulterants and substitution in Chinese patent medicines. Sci. Rep. 7, 5858. https://doi.org/10.1038/s41598-017-05892-y (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Ichim, M. C. & de Boer, H. J. A review of authenticity and authentication of commercial ginseng herbal medicines and food supplements. Front. Pharmacol. https://doi.org/10.3389/fphar.2020.612071 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Dhivya, S. et al. Validated identity test method for Ginkgo biloba NHPs using DNA-based species-specific hydrolysis PCR probe. J. AOAC Int. 102, 1779–1786. https://doi.org/10.5740/jaoacint.18-0319 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Singh, A., Bajpai, V., Srivastava, M., Arya, K. R. & Kumar, B. Rapid screening and distribution of bioactive compounds in different parts of Berberis petiolaris using direct analysis in real time mass spectrometry. J. Pharm. Anal. 5, 332–335 (2015).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Kim, H. K., Choi, Y. H. & Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 5, 536 (2010).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 65.

    Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Illumina. 16S Metagenomic Sequencing Library Preparation. Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System (Part 15044223 Rev. B). (2013), Accessed 07-2017, available at https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.

  • 67.

    Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821. https://doi.org/10.1038/s41596-019-0264-1 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188. https://doi.org/10.1093/nar/gkx295 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 9, 488. https://doi.org/10.1186/1471-2164-9-488 (2008).

    CAS 
    Article 

    Google Scholar 

  • 70.

    vegan: Community Ecology Package v. 2.5-6 (2019), available at https://cran.r-project.org/web/packages/vegan/index.html

  • 71.

    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    The future of the IoT (batteries not required)

    Startup improving chemical separations wins MIT $100K competition