in

Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils

[adace-ad id="91168"]
  • 1.

    Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).

    Article 

    Google Scholar 

  • 2.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    LeBauer, DavidS. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 1–5 (2015).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Yue, K. et al. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Sci. Rep. 6, 1–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Avolio, M. L. et al. Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. J. Ecol. 102, 1649–1660 (2014).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Van der Putten, W. H., Bradford, M. A., Pernilla Brinkman, E., van de Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).

    Article 

    Google Scholar 

  • 9.

    Revillini, D., Gehring, C. A. & Johnson, N. C. The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct. Ecol. 30, 1086–1098 (2016).

    Article 

    Google Scholar 

  • 10.

    Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Semchenko, M. et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Větrovsky, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. (Academic Press, 2008).

  • 14.

    Johnson, N. C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185, 631–647 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Velásquez, A. C., Castroverde, C. D. M. & He, S. Y. Plant–pathogen warfare under changing climate conditions. Curr. Biol. 28, R619–R634 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).

    Article 

    Google Scholar 

  • 18.

    Veresoglou, S. D., Barto, E. K., Menexes, G. & Rillig, M. C. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol. 62, 961–969 (2013).

    Article 

    Google Scholar 

  • 19.

    Walters, D. R. & Bingham, I. J. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann. Appl. Biol. 151, 307–324 (2007).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Knorr, M., Frey, S. D. & Curtis, P. S. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86, 3252–3257 (2005).

    Article 

    Google Scholar 

  • 21.

    Chai, Y. et al. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process. Sci. Rep. 6, 27087 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Crowther, T. W. et al. Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecol. Lett. 22, 936–945 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Fogg, K. The effect of added nitrogen on the rate of decomposition of organic matter. Biol. Rev. 63, 433–462 (1988).

    Article 

    Google Scholar 

  • 24.

    Bonner, M. T. et al. Why does nitrogen addition to forest soils inhibit decomposition? Soil Biol. Biochem. 137, 107570 (2019).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Zak, D. R. et al. Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern Hemisphere. Ecology 100, 1–8 (2019).

    Article 

    Google Scholar 

  • 26.

    Hobbie, S. E. et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 82, 389–405 (2012).

    Article 

    Google Scholar 

  • 27.

    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar 

  • 29.

    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article 

    Google Scholar 

  • 30.

    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 31.

    MacKinnon, D. P., Krull, J. L. & Lockwood, C. M. Equivalence of the mediation, confounding and suppression effect. Prev. Sci. 1, 173–181 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Lekberg, Y. et al. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Hart, M. M. & Reader, R. J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 153, 335–344 (2002).

    Article 

    Google Scholar 

  • 35.

    Johnson, N. C. Can fertilization of soil select less mutualistic mycorrhizae? Ecol. Appl. 3, 749–757 (1993).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).

    Article 

    Google Scholar 

  • 37.

    Han, Y., Feng, J., Han, M. & Zhu, B. Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis. Glob. Change Biol. 26, 7229–7241 (2020).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Treseder, K. K. et al. Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait- ­based predictive framework. J. Ecol. 106, 480–489 (2018).

  • 39.

    Sikes, B. A., Cottenie, K. & Klironomos, J. N. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol. 97, 1274–1280 (2009).

    Article 

    Google Scholar 

  • 40.

    Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism – parasitism continuum. New Phytol. 135, 575–585 (1997).

  • 42.

    Balser, T. C., Treseder, K. K. & Ekenler, M. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37, 601–604 (2005).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Cappelli, S. L., Pichon, N. A., Kempel, A. & Allan, E. Sick plants in grassland communities: a growth‐defense trade‐off is the main driver of fungal pathogen abundance. Ecol. Lett. 23, 1349–1359 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Grman, E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93, 711–718 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Kardol, P., Martijn, Bezemer, T. & van der Putten, W. H. Temporal variation in plant-soil feedback controls succession. Ecol. Lett. 9, 1080–1088 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 3, 400–406 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Cleland, E. E. et al. Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems 22, 1466–1477 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad. Sci. USA 111, 10019–10019 (2014).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1052–1053 (2014).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).

  • 53.

    Karimi, B. et al. Microbial diversity and ecological networks as indicators of environmental quality. Environ. Chem. Lett. 15, 265–281 (2017).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. https://doi.org/10.1038/s41396-019-0459-z (2019).

  • 55.

    Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Corradi, N. et al. Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. Appl. Environ. Microbiol. 73, 366–369 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Tedersoo, L. et al. Response to Comment on “Global diversity and geography of soil fungi. Science 349, 936 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Malcolm, G. M., Kuldau, G. A., Gugino, B. K. & Jiménez-Gasco, M. D. M. Hidden host plant associations of soilborne fungal pathogens: an ecological perspective. Phytopathology 103, 538–544 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Taylor, D. L. et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing. Appl. Environ. Microbiol. 82, 7217–7226 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Zou, K., Thebault, E., Lacroix, G. & Barot, S. Interactions between the green and brown food web determine ecosystem functioning. Funct. Ecol. 30, 1454–1465 (2016).

    Article 

    Google Scholar 

  • 62.

    Chen, W. et al. Fertility‐related interplay between fungal guilds underlies plant richness–productivity relationships in natural grasslands. New Phytol. 226, 1129–1143 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 63.

    Busby, P. E., Peay, K. G. & Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 209, 1681–1692 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Li, X., Ding, C., Zhang, T. & Wang, X. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem. 72, 11–18 (2014).

    Article 
    CAS 

    Google Scholar 

  • 65.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • 66.

    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, 1–11 (2012).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Kurtz, Z., Mueller, C., Miraldi, E. & Bonneau, R. SpiecEasi: Sparse Inverse Covariance For Ecological Statistical Inference. R package version 1.0.6 (2019).

  • 68.

    Oksanen, J. et al. vegan: Community Ecology Package. R package (2019).

  • 69.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).


  • Source: Ecology - nature.com

    MIT J-WAFS awards eight grants in seventh round of seed funding

    Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific