in

Non-lethal effects of entomopathogenic nematode infection

  • 1.

    Gaugler, R. Entomopathogenic nematology (2002).

  • 2.

    Gaugler, R. Entomopathogenic Nematodes in Biological Control (CRC Press, 2018).

    Book 

    Google Scholar 

  • 3.

    Grewal, P. S., Ehlers, R.-U. & Shapiro-Ilan, D. I. Nematodes as Biocontrol Agents (CABI, 2005).

    Book 

    Google Scholar 

  • 4.

    Duncan, L. & McCoy, C. Vertical distribution in soil, persistence, and efficacy against citrus root weevil (coleoptera: Curculionidae) of two species of entomogenous nematodes (rhabditida: Steinernematidae; heterorhabditidae). Environ. Entomol. 25, 174–178 (1996).

    Article 

    Google Scholar 

  • 5.

    Duncan, L., McCoy, C. & Terranova, A. Estimating sample size and persistence of entomogenous nematodes in sandy soils and their efficacy against the larvae of Diaprepes abbreviatus in Florida. J. Nematol. 28, 56 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Bullock, R., Pelosi, R. & Killer, E. Management of citrus root weevils (coleoptera: Curculionidae) on florida citrus with soil-applied entomopathogenic nematodes (nematoda: Rhabditida). Florida Entomologist 1–7 (1999).

  • 7.

    Koppenhöfer, A. M. & Fuzy, E. M. Steinernema scarabaei for the control of white grubs. Biol. Control 28, 47–59 (2003).

    Article 

    Google Scholar 

  • 8.

    Grewal, P., Power, K., Grewal, S., Suggars, A. & Haupricht, S. Enhanced consistency in biological control of white grubs (coleoptera: Scarabaeidae) with new strains of entomopathogenic nematodes. Biol. Control 30, 73–82 (2004).

    Article 

    Google Scholar 

  • 9.

    Georgis, R. et al. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006).

    Article 

    Google Scholar 

  • 10.

    Labaude, S. & Griffin, C. T. Transmission success of entomopathogenic nematodes used in pest control. Insects 9, 72 (2018).

    Article 

    Google Scholar 

  • 11.

    Li, X.-Y., Cowles, R., Cowles, E., Gaugler, R. & Cox-Foster, D. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 37, 365–374 (2007).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Castillo, J. C., Reynolds, S. E. & Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537–547 (2011).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Ribeiro, C. et al. Insect immunity-effects of factors produced by a nematobacterial complex on immunocompetent cells. J. Insect Physiol. 45, 677–685 (1999).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Garriga, A., Mastore, M., Morton, A., Garcia del Pino, F. & Brivio, M. F. Immune response of drosophila suzukii larvae to infection with the nematobacterial complex steinernema carpocapsae-xenorhabdus nematophila. Insects 11, 210 (2020).

    Article 

    Google Scholar 

  • 15.

    Ebrahimi, L., Niknam, G., Dunphy, G. & Toorchi, M. Side effects of immune response of colorado potato beetle, leptinotarsa decemlineata against the entomopathogenic nematode, steinernema carpocapsae infection. Invertebr. Surviv. J. 11, 132–142 (2014).

    Google Scholar 

  • 16.

    Ebrahimi, L., Niknam, G. & Lewis, E. Lethal and sublethal effects of iranian isolates of steinernema feltiae and heterorhabditis bacteriophora on the colorado potato beetle, leptinotarsa decemlineata. Biocontrol 56, 781–788 (2011).

    Article 

    Google Scholar 

  • 17.

    Chen, S., Li, J., Han, X. & Moens, M. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to delia radicum. Biocontrol 48, 713–724 (2003).

    Article 

    Google Scholar 

  • 18.

    Mastore, M., Quadroni, S., Toscano, A., Mottadelli, N. & Brivio, M. F. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. J. Therm. Biol 79, 15–23 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Wojda, I. Temperature stress and insect immunity. J. Therm. Biol 68, 96–103 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Lee, J. H., Dillman, A. R. & Hallem, E. A. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 14, 1–17 (2016).

    Article 

    Google Scholar 

  • 21.

    Girling, R., Ennis, D., Dillon, A. & Griffin, C. The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (coleoptera: Curculionidae). J. Invertebr. Pathol. 104, 195–202 (2010).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Mastore, M., Arizza, V., Manachini, B. & Brivio, M. F. Modulation of immune responses of Rhynchophorus ferrugineus (insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (nematoda: Rhabditida). Insect Sci. 22, 748–760 (2015).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Attract and kill: spinosad containing spheres to control onion maggot (Delia antiqua). Pest Manag. Sci. 76, 2720–2725 (2020).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Field monitoring of onion maggot (Delia antiqua) fly through improved trapping. J. Appl. Entomol. 144, 382–387 (2020).

    Article 

    Google Scholar 

  • 25.

    Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, 281–324 (Elsevier, 1997).

  • 26.

    White, G. et al. A method for obtaining infective nematode larvae from cultures. Science (Washington) 66, 302–303 (1927).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    R Core Team. R: A. Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2021).

  • 28.

    Wickham, H. et al. Welcome to the tidyverse. J. Open Sour. Softw. 4, 1686 (2019). https://doi.org/10.21105/joss.01686

    ADS 
    Article 

    Google Scholar 

  • 29.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression third. (Sage, 2019).

    Google Scholar 

  • 30.

    Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means (2021). R package version 1.5.5-1.

  • 31.

    Franceschi, C. et al. Genes involved in immune response/inflammation, igf1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: The lesson of centenarians. Mech. Ageing Dev. 126, 351–361 (2005).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Kumar, S. et al. Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev. Cell 49, 100–117 (2019).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Bruno, P. et al. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci. Rep. 10, 1–12 (2020).

    Article 

    Google Scholar 

  • 34.

    Stock, S. P., Campos-Herrera, R., El-Borai, F. & Duncan, L. Steinernema khuongi n. sp. (panagrolaimomorpha, steinernematidae), a new entomopathogenic nematode species from Florida, USA. J. Helminthol. 93, 226–241 (2019).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Nagelkerke, N. J. et al. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).

    MathSciNet 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Areas of global importance for conserving terrestrial biodiversity, carbon and water

    Climate and sustainability classes expand at MIT