in

Nonlinear shifts in infectious rust disease due to climate change

  • 1.

    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine Biota. Science 296, 2158–2162 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Gautam, H. R., Bhardwaj, M. L. & Kumar, R. Climate change and its impact on plant diseases. Curr. Sci. 105, 1685–1691 (2013).

    Google Scholar 

  • 3.

    Bebber, D. P. & Gurr, S. J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 74, 62–64 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Lukanda, M. et al. First report of maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis. 98, 1448–1448 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Brasier, C. M. in The Elms: Breeding,Conservation, and Disease Management (ed. Dunn, C. P.) 61–72 (Springer US, 2000). https://doi.org/10.1007/978-1-4615-4507-1_4.

  • 6.

    Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A. & Godfray, H. C. J. The consequence of tree pests and diseases for ecosystem services. Science 342, 1235773 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Geometry and evolution of the ecological niche in plant-associated microbes. Nat. Commun. 11, 2955 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Donald, F., Green, S., Searle, K., Cunniffe, N. J. & Purse, B. V. Small scale variability in soil moisture drives infection of vulnerable juniper populations by invasive forest pathogen. Ecol. Manag. 473, 118324 (2020).

    Article 

    Google Scholar 

  • 9.

    Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011).

    Article 

    Google Scholar 

  • 10.

    Pathak, R., Singh, S. K., Tak, A. & Gehlot, P. Impact of climate change on host, pathogen and plant disease adaptation regime: a review. Biosci. Biotechnol. Res. Asia 15, 529–540 (2018).

    Article 

    Google Scholar 

  • 11.

    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Ghelardini, L., Pepori, A. L., Luchi, N., Capretti, P. & Santini, A. Drivers of emerging fungal diseases of forest trees. Ecol. Manag. 381, 235–246 (2016).

    Article 

    Google Scholar 

  • 13.

    Wyka, S. A. et al. Emergence of white pine needle damage in the northeastern United States is associated with changes in pathogen pressure in response to climate change. Glob. Change Biol. 23, 394–405 (2017).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Garrett, K. A. et al. in Climate Change 2nd edn (ed. Letcher, T. M.) 325–338 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63524-2.00021-X.

  • 15.

    Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Huey, R. B. & Berrigan, D. Temperature, demography, and ectotherm fitness. Am. Nat. 158, 204–210 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).

    Google Scholar 

  • 21.

    Rohr, J. R. et al. Frontiers in climate change—disease research. Trends Ecol. Evol. 26, 270–277 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Peterson, A. T. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect. Dis. 9, 59 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Garamszegi, L. Z. Climate change increases the risk of malaria in birds. Glob. Change Biol. 17, 1751–1759 (2011).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Cook, B. I., Mankin, J. S. & Anchukaitis, K. J. Climate change and drought: from past to future. Curr. Clim. Change Rep. 4, 164–179 (2018).

    Article 

    Google Scholar 

  • 25.

    Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. Sci. 63, 597–612 (2006).

    Article 

    Google Scholar 

  • 26.

    Brodribb, T. J. & McAdam, S. A. M. Passive origins of stomatal control in vascular plants. Science 331, 582–585 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Change Biol. 18, 267–276 (2012).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Baptista-Rosas, R. C. et al. Molecular detection of Coccidioides spp. from environmental samples in Baja California: linking Valley Fever to soil and climate conditions. Fungal Ecol. 5, 177–190 (2012).

    Article 

    Google Scholar 

  • 29.

    Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol. Lett. 20, 184–193 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Mcelrone, A. J., Reid, C. D., Hoye, K. A., Hart, E. & Jackson, R. B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Change Biol. 11, 1828–1836 (2005).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Berzitis, E. A., Minigan, J. N., Hallett, R. H. & Newman, J. A. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Glob. Change Biol. 20, 2778–2792 (2014).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Bebber, D. P. & Gurr, S. J. Biotic interactions and climate in species distribution modelling. bioRxiv 520320 https://doi.org/10.1101/520320 (2019).

  • 33.

    Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. & Medley, G. F. Ruminating on complexity: macroparasites of wildlife and livestock. Trends Ecol. Evol. 19, 181–188 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Paull, S. H., LaFonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host-parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article 

    Google Scholar 

  • 37.

    Bebber, D. P. Climate change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180269 (2019).

    Article 

    Google Scholar 

  • 38.

    Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. https://doi.org/10.17161/bi.v2i0.4 (2005).

  • 39.

    Garrett, K. A. et al. Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathol. 60, 15–30 (2011).

    Article 

    Google Scholar 

  • 40.

    Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).

    Article 

    Google Scholar 

  • 41.

    Simler-Williamson, A. B., Rizzo, D. M. & Cobb, R. C. Interacting effects of global change on forest pest and pathogen dynamics. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024934 (2019).

  • 42.

    Campbell, E. M. & Antos, J. A. Distribution and severity of white pine blister rust and mountain pine beetle on whitebark pine in British Columbia. Can. J. Res. 30, 1051–1059 (2000).

    Article 

    Google Scholar 

  • 43.

    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).

    Article 

    Google Scholar 

  • 44.

    McDonald, G. I., Richardson, B. A., Zambino, P. J., Klopfenstein, N. B. & Kim, M.-S. Pedicularis and Castilleja are natural hosts of Cronartium ribicola in North America: a first report. Pathol. 36, 73–82 (2006).

    Article 

    Google Scholar 

  • 45.

    Geils, B. W., Hummer, K. E. & Hunt, R. S. White pines, Ribes, and blister rust: a review and synthesis. Pathol. 40, 147–185 (2010).

    Article 

    Google Scholar 

  • 46.

    Kinloch, B. B. White pine blister rust in North America: past and prognosis. Phytopathology 93, 1044–1047 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 47.

    Arsdel, E. P. V., Geils, B. W. & Zambino, P. J. Epidemiology for hazard rating of white pine blister rust. In: Guyon JC Comp Proc. 53rd Western International Forest Disease Work Conference 2005 September 26–30 Jackson WY USA (Department of Agriculture, Forest Service, Intermountain Region, Ogden UT, 2006).

  • 48.

    Dudney, J. Characterizing and Managing Drivers of Change in Mediterranean Forest and Grassland Communities (UC Berkeley, 2019).

  • 49.

    Kreyling, J. et al. To replicate, or not to replicate—that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. 21, 1629–1638 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Larson, E. R. & Kipfmueller, K. F. Ecological disaster or the limits of observation? reconciling modern declines with the long-term dynamics of whitebark pine communities. Geogr. Compass 6, 189–214 (2012).

    Article 

    Google Scholar 

  • 51.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Kinloch, B. B. et al. Patterns of variation in blister rust resistance in sugar pine (Pinus lambertiana). In: Proc. IUFRO joint conference: Genetics of five-needle pines, rusts of forest trees, and Strobusphere; 2014 June 15–20; Fort Collins, CO. Proc. RMRS-P-76 (eds Schoettle, A. W., Sniezko, R. A. & Kliejunas, J. T.) 124–128 (Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2018).

  • 53.

    King, J. N., David, A., Noshad, D. & Smith, J. A review of genetic approaches to the management of blister rust in white pines. Pathol. 40, 292–313 (2010).

    Article 

    Google Scholar 

  • 54.

    Maloney, P. E. Incidence and distribution of white pine blister rust in the high-elevation forests of California. Forest Pathol. 41, 308–316 (2011).

    Article 

    Google Scholar 

  • 55.

    Dunlap, J. M. Variability in and environmental correlates to white pine blister rust incidence in five California white pine species. Northwest Sci. 86, 248–263 (2012).

    Article 

    Google Scholar 

  • 56.

    Thoma, D. P., Shanahan, E. K. & Irvine, K. M. Climatic correlates of white pine blister rust infection in whitebark pine in the greater yellowstone ecosystem. Forests 10, 666 (2019).

    Article 

    Google Scholar 

  • 57.

    Talley, S. M., Coley, P. D. & Kursar, T. A. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2, 7 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Davis, J. K. et al. Improving the prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an endemic region of the United States. Acta Trop. 185, 242–250 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Manstretta, V. & Rossi, V. Effects of weather variables on ascospore discharge from Fusarium graminearum Perithecia. PLoS ONE 10, e0138860 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 60.

    Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Dudney, J. C. et al. Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species. Ecosphere 11, e03263 (2020).

    Article 

    Google Scholar 

  • 63.

    Schwandt, J. W., Lockman, I. B., Kliejunas, J. T. & Muir, J. A. Current health issues and management strategies for white pines in the western United States and Canada. Forest Pathol. 40, 226–250 (2010).

    Article 

    Google Scholar 

  • 64.

    Dudney, J. et al. Overstory removal and biological legacies influence long-term forest management outcomes on introduced species and native shrubs. Forest Ecol. Manag. 491, 119149 (2021).

    Article 

    Google Scholar 

  • 65.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Goodsman, D. W., Lusebrink, I., Landhäusser, S. M., Erbilgin, N. & Lieffers, V. J. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. N. Phytol. 197, 586–594 (2013).

    CAS 
    Article 

    Google Scholar 

  • 67.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).

    Article 

    Google Scholar 

  • 68.

    Bockino, N. K. & Tinker, D. B. Interactions of white pine blister rust and mountain pine beetle in whitebark pine ecosystems in the southern Greater Yellowstone Area. Nat. Areas J. 32, 31–40 (2012).

    Article 

    Google Scholar 

  • 69.

    Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).

  • 70.

    Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 41, 2014GL062433 (2014).

    Article 

    Google Scholar 

  • 71.

    Paz‐Kagan, T. et al. What mediates tree mortality during drought in the southern Sierra Nevada? Ecol. Appl. 27, 2443–2457 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 72.

    Zambino, P. J. Biology and pathology of Ribes and their implications for management of white pine blister rust. Pathol. 40, 264–291 (2010).

    Article 

    Google Scholar 

  • 73.

    Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).

    Article 

    Google Scholar 

  • 75.

    Deyle, E. R., May, R. M., Munch, S. B. & Sugihara, G. Tracking and forecasting ecosystem interactions in real time. Proc. R. Soc. B: Biol. Sci. 283, 20152258 (2016).

    Article 

    Google Scholar 

  • 76.

    Deyle, E. R., Maher, M. C., Hernandez, R. D., Basu, S. & Sugihara, G. Global environmental drivers of influenza. Proc. Natl Acad. Sci. 113, 13081–13086 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. Ecol. Manag. 380, 321–334 (2016).

    Article 

    Google Scholar 

  • 79.

    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 80.

    Flower, C. E. & Gonzalez-Meler, M. A. Responses of temperate forest productivity to insect and pathogen disturbances. Annu. Rev. Plant Biol. 66, 547–569 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Wong, C. M. & Daniels, L. D. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Glob. Change Biol. 23, 1926–1941 (2017).

    ADS 
    Article 

    Google Scholar 

  • 83.

    Endangered and Threatened Wildlife and Plants; Threatened Species Status for Pinus albicaulis (Whitebark Pine) With Section 4(d) Rule. Federal Register https://www.federalregister.gov/documents/2020/12/02/2020-25331/endangered-and-threatened-wildlife-and-plants-threatened-species-status-for-pinus-albicaulis (2020).

  • 84.

    Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    PRISM Climate Group. PRISM Climate Group, Oregon State U. http://www.prism.oregonstate.edu/normals/.

  • 86.

    Abatzoglou, J. T. & Brown, T. J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 32, 772–780 (2012).

    Article 

    Google Scholar 

  • 87.

    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).

    Article 

    Google Scholar 

  • 88.

    Mitchell, K. E. et al. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. Atmospheres https://doi.org/10.1029/2003JD003823@10.1002/(ISSN)2169-8996.GCIP3 (2018).

  • 89.

    Ritchie, J. & Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 140, 1276–1291 (2017).

    Article 

    Google Scholar 

  • 90.

    R Core Team. R: A Language and Environment for Statistical Computing https://www.rproject.org/ (2017).

  • 91.

    Burns, K. S., Schoettle, A. W., Jacobi, W. R. & Mahalovich, M. F. White pine blister rust in the Rocky Mountain Region and options for management. Management. https://www.fs.fed.us/rm/pubs/rmrs_gtr206.pdf (2007).

  • 92.

    Fox, J. et al. car: Companion to applied regression (2019).

  • 93.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • 94.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer New York, 2009).

  • 95.

    Baker-Austin, C. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 3, 73–77 (2013).

    ADS 
    Article 

    Google Scholar 

  • 96.

    Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    ADS 
    Article 

    Google Scholar 

  • 97.

    Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl Acad. Sci. 105, 17436–17441 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Wooldridge, J. M. Introductory Econometrics: A Modern Approach. 6th ed. (Cengage learning. Boston, MA, 2015).

  • 99.

    Berge, L. fixest: Fast Fixed-Effects Estimations. https://cran.rproject.org/web/packages/fixest/index.html (2020).

  • 100.

    Harrell, F. E. rms: Regression Modeling Strategies https://CRAN.R-project.org/package=rms (2020).

  • 101.

    Kelly, M., Guo, Q., Liu, D. & Shaari, D. Modeling the risk for a new invasive forest disease in the United States: An evaluation of five environmental niche models. Comput. Environ. Urban Syst. 31, 689–710 (2007).

    Article 

    Google Scholar 

  • 102.

    Meentemeyer, R. K. et al. Epidemiological modeling of invasion in heterogeneous landscapes: spread of sudden oak death in California (1990–2030). Ecosphere 2, 1–24 (2011).

    Article 

    Google Scholar 

  • 103.

    QGIS Development Team. QGIS Geographic Information System. http://qgis.osgeo.org/ (2020).

  • 104.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • 105.

    Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28, 522–540 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 106.

    Cribbs, J., Nesmith, J., van Mantgem, P. & Dudney, J. Using stable isotope analysis and foliar growth measurements to understand physiological responses to drought in whitebark pine. Presented at the Ecological Society of America Symposium (2020).

  • 107.

    Farquhar, G. D. & Richards, R. A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 11, 539–552 (1984).

    CAS 
    Article 

    Google Scholar 

  • 108.

    Dudney, J. et al. Climate change and white pine blister rust. https://doi.org/10.17605/OSF.IO/PC9FM. (2021).

  • 109.

    Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. 106, 19644–19650 (2009).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Areas of global importance for conserving terrestrial biodiversity, carbon and water

    Climate and sustainability classes expand at MIT