in

North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift

  • 1.

    Astthorsson, O. S. & Palsson, O. K. Predation on euphausiids by cod, Gadus morhua, in winter in Icelandic subarctic waters. Mar. Biol. 96, 327–334 (1987).

    Article 

    Google Scholar 

  • 2.

    MacAulay, M. C., Wishner, K. F. & Daly, K. L. Acoustic scattering from zooplankton and micronekton in relation to a whale feeding site near Georges Bank and Cape Cod. Cont. Shelf Res. 15, 509–537 (1995).

    Article 

    Google Scholar 

  • 3.

    Víkingsson, G. A. Feeding of fin whales (Balaenoptera physalus) off Iceland – diurnal and seasonal variation and possible rates. J. Northwest Atl. Fish. Sci. 22, 77–89 (1997).

    Article 

    Google Scholar 

  • 4.

    Tarling, G. A., Ensor, N. S., Fregin, T., Goodall-Copestake, W. P. & Fretwell, P. An introduction to the biology of Northern krill (Meganyctiphanes norvegica Sars). Adv. Mar. Biol. 57, 1–40 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    McBride, M. M. et al. Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J. Mar. Sci. 71, 1934–1955 (2014).

    Article 

    Google Scholar 

  • 6.

    Orlova, E.L. et al. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952–2009). Front. Mar. Sci. 1, 1–13 (2015).

    Article 

    Google Scholar 

  • 7.

    Silva, T. et al. Long-term changes of euphausiids in shelf and oceanic habitats southwest, south and southeast of Iceland. J. Plankton Res. 36, 1262–1278 (2014).

    Article 

    Google Scholar 

  • 8.

    Warner, A. J. & Hays, G. C. Sampling by the Continuous Plankton Recorder Survey. Prog. Oceanogr. 6611, 237–256 (1994).

    Article 

    Google Scholar 

  • 9.

    Williams, R. & Lindley, J. A. Variability in abundance, vertical distribution and ontogenetic migrations of Thysanoessa longicaudata (Crustacea: Euphausiacea) in the north-eastern Atlantic Ocean. Mar. Biol. 69, 321–330 (1982).

    Article 

    Google Scholar 

  • 10.

    Beaugrand, G., Luczak, C. & Edwards, M. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).

    Article 

    Google Scholar 

  • 11.

    Edwards, M., Beaugrand, G., Helaouët, P., Alheit, J. & Coombs, S. Marine ecosystem response to the Atlantic Multidecadal Oscillation. PLoS ONE 8, e57212 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Harris, V., Edwards, M. & Olhede, S. C. Multidecadal Atlantic climate variability and its impact on marine pelagic communities. J. Mar. Syst. 133, 55–69 (2014).

    Article 

    Google Scholar 

  • 14.

    Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibanez, F. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11, 1157–1168 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Edwards, M., Beaugrand, G., Hays, G. C., Koslow, J. A. & Richardson, A. J. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol. Evol. 25, 602–610 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Harris, V., Olhede, S. C. & Edwards, M. Multidecadal spatial reorganisation of plankton communities in the North East Atlantic. J. Mar. Syst. 142, 16–24 (2015).

    Article 

    Google Scholar 

  • 17.

    Reid, P. C. & Edwards, M. Long-term changes in the pelagos, benthos and fisheries of the North Sea. Senckenbergiana maritima. 32, 107–115 (2001).

    Article 

    Google Scholar 

  • 18.

    Gregory, B., Christophe, L. & Martin, E. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).

    Article 

    Google Scholar 

  • 19.

    Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147 (2019).

    Article 

    Google Scholar 

  • 22.

    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Progr. Ser. 458, 1–19 (2012).

    Article 

    Google Scholar 

  • 23.

    Bograd, S. J., Checkley, D. A. & Wooster, W. S. CalCOFI: a half century of physical, chemical, and biological research in the California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2349–2353 (2003).

    Article 

    Google Scholar 

  • 24.

    Brinton, E. & Townsend, A. Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2449–2472 (2003).

    Article 

    Google Scholar 

  • 25.

    Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Caesar, A.L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation.Nature 556, 191–196 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Reid, P. C. et al. A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Glob. Chang. Biol. 13, 1910–1921 (2007).

    Article 

    Google Scholar 

  • 28.

    Burrows, M. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Chang. 9, 959–963 (2019).

    Article 

    Google Scholar 

  • 29.

    Biri, S. & Klein, B. North Atlantic sub‐polar gyre climate index: a new approach. J. Geophys. Res. Ocean. 124, 4222–4237 (2019).

    Article 

    Google Scholar 

  • 30.

    Batten, S. et al. CPR sampling: the technical background, materials and methods, consistency and comparability. Prog. Oceanogr. 58, 193–215 (2003).

    Article 

    Google Scholar 

  • 31.

    Reid, P. C. et al. The Continuous Plankton Recorder: concepts and history, from plankton indicator to undulating recorders. Prog. Oceanogr. 58, 117–173 (2003).

    Article 

    Google Scholar 

  • 32.

    Richardson, A. J. et al. Using Continuous Plankton Recorder data. Prog. Oceanogr. 68, 27–74 (2006).

    Article 

    Google Scholar 

  • 33.

    Dalpadado, P., Yamaguchi, A., Ellertsen, B. & Johannessen, S. Trophic interactions of macro-zooplankton (krill and amphipods) in the marginal ice zone of the Barents Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 55, 2266–2274 (2008).

    Article 

    Google Scholar 

  • 34.

    Letessier, T. B., Cox, M. J. & Brierley, A. S. Drivers of euphausiid species abundance and numerical abundance in the Atlantic Ocean. Mar. Biol. 156, 2539–2553 (2009).

    Article 

    Google Scholar 

  • 35.

    Lowe, M. R., Lawson, G. L. & Fogarty, M. J. Drivers of euphausiid distribution and abundance in the Northeast U.S. Shelf Large Marine Ecosystem. ICES J. Mar. Sci. 75, 1280–1295 (2018).

    Article 

    Google Scholar 

  • 36.

    Lindley, J. A. Population dynamics and production of euphausiids. I. Thysanoessa longicaudata in the North Atlantic Ocean. Mar. Biol. 46, 121–130 (1978).

    Article 

    Google Scholar 

  • 37.

    Lindley, J. A. Population dynamics and production of euphausiids II. Thysanoessa inermis and T. raschii in the North Sea and American Coastal Waters. Mar. Biol. 59, 225–233 (1980).

    Article 

    Google Scholar 

  • 38.

    Lindley, J. A. Population dynamics and production of euphausiids. Mar. Biol. 71, 1–6 (1982).

    Article 

    Google Scholar 

  • 39.

    Rayner, N. A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article 

    Google Scholar 

  • 40.

    Edwards, M., Johns, D. G. D., Leterme, S. C. S., Svendsen, E. & Richardson, A. J. A. Regional climate change and harmful algal blooms in the northeast Atlantic. Limnol. Oceanogr. 51, 820–829 (2006).

    Article 

    Google Scholar 

  • 41.

    Hélaouët, P., Beaugrand, G. & Reygondeau, G. Reliability of spatial and temporal patterns of C. finmarchicus inferred from the CPR survey. J. Mar. Syst. 153, 18–24 (2016).

    Article 

    Google Scholar 

  • 42.

    Owens, N. J. P. et al. All plankton sampling systems underestimate abundance: response to “Continuous Plankton Recorder underestimates zooplankton abundance” by J.W. Dippner and M. Krause. J. Mar. Syst. 128, 240–242 (2013).

    Article 

    Google Scholar 

  • 43.

    Jonas, T. D., Walne, A., Beaugrand, G., Gregory, L. & Hays, G. C. The volume of water filtered by a Continuous Plankton Recorder sample: the effect of ship speed. J. Plankton Res. 26, 1499–1506 (2004).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Taking an indirect path into a bright future

    Sex-biased genes and metabolites explain morphologically sexual dimorphism and reproductive costs in Salix paraplesia catkins