Ryther, J. H. The Sargasso Sea. Sci. Am. 194, 98–108 (1956).
Google Scholar
Littler, D. S. & Littler, M. M. Caribbean Reef Plants (Offshore Graphics, 2000).
Winge, O. The Sargasso Sea, Its Boundaries and Vegetation In Report of the Danish Oceanographic Expedition, Vol. III, 1908–1910, (Copenhagen: Andr. Fred. Hòst and Sòn) 34 pp. Miscellaneous Paper Number 2. (1923).
Parr, A. E. Quantitative observations on the pelagic Sargassum vegetation of the western North Atlantic. Bull. Bingham Oceanogr. Collect. 6, 1–94 (1939).
Lapointe, B. E. A comparison of nutrient-limited productivity in Sargassum natans from neritic vs. oceanic waters of the western North Atlantic Ocean. Limnol. Oceanogr. 40, 625–633 (1995).
Google Scholar
Lapointe, B. E., West, L. E., Sutton, T. T. & Hu, C. Ryther revisited: nutrient excretions by fishes enhance productivity of pelagic Sargassum in the western North Atlantic Ocean. J. Exp. Mar. Biol. Ecol. 458, 46–56 (2014).
Google Scholar
Gower, J., Hu, C., Borstad, G. & King, S. Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 44, 3619–3625 (2006).
Google Scholar
Williams, A., Feagin, R. & Stafford, A. W. Environmental impacts of beach raking of Sargassum spp. on Galveston Island, TX. Shore Beach 76, 63–69 (2008).
Moritsugu, K. Tampa Bay Times (Times Publishing Company, 1991).
Turner, R. E. & Rabalais, N. N. Coastal eutrophication near the Mississippi river delta. Nature 368, 619–621 (1994).
Google Scholar
Gower, J. F. R. & King, S. A. Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int. J. Remote Sens. 32, 1917–1929 (2011).
Google Scholar
Johnson, D. R., Ko, D. S., Franks, J. S., Moreno, P. & Sanchez-Rubio, G. The Sargassum invasion of the Eastern Caribbean and dynamics of the Equatorial North Atlantic. In Proceedings of the 65th Annual Gulf and Caribbean Fisheries Institute Conference pp. 102–103 (2013). http://aquaticcommons.org/21444/1/GCFI_65-17.pdf.
Gower, J., Young, E. & King, S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens. Lett. 4, 764–773 (2013).
Google Scholar
Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269–102269 (2020).
Google Scholar
Wang, M. et al. The great Atlantic Sargassum belt. Science 364, 83–87 (2019).
Google Scholar
Djakouré, S., Araujo, M., Hounsou-Gbo, A., Noriega, C. & Bourlès, B. On the potential causes of the recent Pelagic Sargassum blooms events in the tropical North Atlantic Ocean. Biogeosci. Discuss. https://doi.org/10.5194/bg-2017-346 (2017).
Oviatt, C. A., Huizenga, K., Rogers, C. S. & Miller, W. J. What nutrient sources support anomalous growth and the recent Sargassum mass stranding on Caribbean beaches? A review. Mar. Pollut. Bull. 145, 517–525 (2019).
Google Scholar
McGillicuddy, D. J., Jr, Anderson, L. A., Doney, S. C. & Maltrud, M. E. Eddy‐driven sources and sinks of nutrients in the upper ocean: results from a 0.1 resolution model of the North Atlantic. Global Biogeochem. Cycles 17, 1035 (2003).
Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).
Google Scholar
Qi, L., Hu, C., Xing, Q. & Shang, S. Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae 58, 35–44 (2016).
Google Scholar
Qi, L., Hu, C., Wang, M., Shang, S. & Wilson, C. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 44, 501–511,509 (2017).
Google Scholar
Smetacek, V. & Zingone, A. Green and golden seaweed tides on the rise. Nature 504, 84–88 (2013).
Google Scholar
Van Tussenbroek, B. I. et al. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 122, 272–281 (2017).
Google Scholar
Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069–e8069 (2019).
Google Scholar
Cabanillas-Terán, N., Hernández-Arana, H. A., Ruiz-Zárate, M.-Á., Vega-Zepeda, A. & Sanchez-Gonzalez, A. Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 7, e7589–e7589 (2019).
Google Scholar
Maurer, A. S., De Neef, E. & Stapleton, S. Sargassum accumulation may spell trouble for nesting sea turtles. Front. Ecol. Environ. 13, 394–395 (2015).
Google Scholar
Webster, R. K. & Linton, T. Development and implementation of Sargassum early advisory system (SEAS). Shore Beach 81, 1–1 (2013).
Resiere, D. et al. Sargassum seaweed on Caribbean islands: an international public health concern. Lancet 392, 2691–2691 (2018).
Google Scholar
Glibert, P. et al. The role of in the global proliferation of harmful algal blooms: new perspectives and approaches. Oceanography 18, 196–207 (2005).
Glibert, P. M. Eutrophication, harmful algae and biodiversity — Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).
Google Scholar
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 6223 https://doi.org/10.1126/science.1259855 (2015).
Ryther, J. H. The ecology of phytoplankton blooms in Moriches bay and Great South bay, Long Island, New York. Biol. Bull. 106, 198–209 (1954).
Google Scholar
Ryther, J. H. & Dunstan, W. M. Nitrogen, Phosphorus, and Eutrophication in the coastal marine environment. Science 171, 1008 LP-1013 (1971).
Google Scholar
Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).
Google Scholar
Oelsner, G. P. & Stets, E. G. Recent trends in nutrient and sediment loading to coastal areas of the conterminous U.S.: insights and global context. Sci. Total Environ. 654, 1225–1240 (2019).
Google Scholar
Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).
Google Scholar
Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).
Google Scholar
Lapointe, B. E., Littler, M. M. & Littler, D. S. A comparison of nutrient-limited productivity in macroalgae from a Caribbean barrier reef and from a mangrove ecosystem. Aquat. Bot. 28, 243–255 (1987).
Google Scholar
Culliney, J. L. Measurements of reactive phosphorus associated with pelagic Sargassum in the Northwest Sargasso Sea1. Limnol. Oceanogr. 15, 304–305 (1970).
Google Scholar
Schaffelke, B. Particulate organic matter as an alternative nutrient source for tropical Sargassum species (Fucales, Phaeophyceae). J. Phycol. 35, 1150–1157 (1999).
Google Scholar
Vonk, J. A., Middelburg, J. J., Stapel, J. & Bouma, T. J. Dissolved organic nitrogen uptake by seagrasses. Limnol. Oceanogr. 53, 542–548 (2008).
Google Scholar
Han, T., Qi, Z., Huang, H., Liao, X. & Zhang, W. Nitrogen uptake and growth responses of seedlings of the brown seaweed Sargassum hemiphyllum under controlled culture conditions. J. Appl. Phycol. 30, 507–515 (2018).
Google Scholar
Fujita, R., Wheeler, P. & Edwards, R. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar. Ecol. Prog. Ser. 53, 293–303 (1989).
Google Scholar
Prospero, J. M. et al. in Nitrogen Cycling in the North Atlantic Ocean and its Watersheds (ed. Robert, W. H.) (Springer, 1996).
Howarth, R. W. Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8, 14–20 (2008).
Google Scholar
Rockström, J. & Karlberg, L. The quadruple squeeze: defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. Ambio 39, 257–265 (2010).
Google Scholar
Hanisak, M. D. & Samuel, M. A. Twelfth International Seaweed Symposium (Springer, 1986).
Rabalais, N. N. et al. Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuar. Coasts 30, 753–772 (2007).
Google Scholar
Tian, H. et al. Long-term trajectory of nitrogen loading and delivery from Mississippi river basin to the Gulf of Mexico. Glob. Biogeochem. Cycles 34, e2019GB006475–e002019GB006475 (2020).
Google Scholar
Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108–108 (2019).
Google Scholar
Lapointe, B. E., Barile, P. J. & Littler, M. M. & Littler, D. S. Macroalgal blooms on southeast Florida coral reefs: II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4, 1106–1122 (2005).
Google Scholar
Dunn, D. E. Trends in Nutrient Inflows to the Gulf of Mexico from Streams Draining the Conterminous United States, 1972-93. Report No. 96-4113 (Austin, TX, 1996).
Turner, R. E. & Rabalais, N. N. Changes in Mississippi River water quality this century: implications for coastal food webs. Bioscience 41, 140–147 (1991).
Google Scholar
Rabalais, N. N. et al. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19, 386–407 (1996).
Google Scholar
Weber, S. C. et al. Amazon River influence on nitrogen fixation and export production in the western tropical North Atlantic. Limnol. Oceanogr. 62, 618–631 (2017).
Google Scholar
Ryther, J. H., Menzel, D. W. & Corwin, N. Influence of Amazon River outflow on ecology of Western Tropical Atlantic. I. Hydrography and nutrient chemistry. J. Mar. Res. 25, 69–69 (1967).
Subramaniam, A. et al. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc. Natl Acad. Sci.USA 105, 10460 LP–10410465 (2008).
Google Scholar
Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785–eaat8785 (2018).
Google Scholar
Howarth, R. W. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen Cycling in the North Atlantic Ocean and its Watersheds (ed. Robert, W. Howarth) (Springer, Dordrecht, 1996). https://doi.org/10.1007/978-94-009-1776-7_3.
Galloway, J. N. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry (ed. Robert, W. Howarth) 35, 181–226 (Springer, 1996).
Gower, J. & King, S. Satellite images show the movement of floating Sargassum in the Gulf of Mexico and Atlantic Ocean. Nat. Preced. https://doi.org/10.1038/npre.2008.1894.1 (2008).
Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).
Google Scholar
Zimmerman, R. C. & Kremer, J. N. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42, 591–604 (1984).
Google Scholar
Kain, J. M. The seasons in the subtidal. Br. Phycol. J. 24, 203–215 (1989).
Google Scholar
Dorado, S., Rooker, J. R., Wissel, B. & Quigg, A. Isotope baseline shifts in pelagic food webs of the Gulf of Mexico. Mar. Ecol. Prog. Ser. 464, 37–49 (2012).
Google Scholar
Kendall, C., Elliott, E. M. & Wankel, S. D. Wiley Online Books 375-449 (2007).
Altieri, K. E., Hastings, M. G., Peters, A. J., Oleynik, S. & Sigman, D. M. Isotopic evidence for a marine ammonium source in rainwater at Bermuda. Glob. Biogeochem. Cycles 28, 1066–1080 (2014).
Google Scholar
Bateman, A. S. & Kelly, S. D. Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43, 237–247 (2007).
Google Scholar
Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M. & Lipschultz, F. Nitrate isotopic composition between Bermuda and Puerto Rico: implications for N2 fixation in the Atlantic Ocean. Global Biogeochem. Cycles 22, GB3014 https://doi.org/10.1029/2007GB003107 (2008).
Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Global Biogeochem. Cycles 19, GB1018 https://doi.org/10.1029/2004GB002320 (2005).
Montoya, J. P. Nitrogen stable isotopes in marine environments. Nitrogen Mar. Environ. 2, 1277–1302 (2008).
Google Scholar
Wissel, B. & Fry, B. Sources of particulate organic matter in the Mississippi River, USA. Large Rivers 15 105–118 (2003).
Zaia Alves, G. H., Hoeinghaus, D. J., Manetta, G. I. & Benedito, E. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains. PLoS ONE 12, e0174499 (2017).
Google Scholar
Smith, N. P. Upwelling in Atlantic shelf waters of South Florida. Florida Scientist 45, 125–138 (1982).
Atkinson, L. P., O’Malley, P. G., Yoder, J. A. & Paffenhöfer, G. A. The effect of summertime shelf break upwelling on nutrient flux in southeastern United States continental shelf waters. J. Mar. Res. 42, 969–993 (1984).
Google Scholar
Subramaniam, A., Mahaffey, C., Johns, W. & Mahowald, N. Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean. Geophys. Res. Lett. 40, 1766–1771 (2013).
Google Scholar
Carpenter, E. J. Nitrogen fixation by a blue-green epiphyte on Pelagic Sargassum. Science 178, 1207–1209 (1972).
Google Scholar
Phlips, E. J., Willis, M. & Verchick, A. Aspects of nitrogen fixation in Sargassum communities off the coast of Florida. J. Exp. Mar. Biol. Ecol. 102, 99–119 (1986).
Google Scholar
Subramaniam, A., Montoya, J. P., Foster, R. A. & Capone, D. G. Nitrogen fixation in the eastern equatorial Atlantic: who and how much? European Geosciences Union General Assembly 11, 10156–10156 (2009).
Carpenter, E. J. et al. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 185, 273–283 (1999).
Google Scholar
Zubkova, M., Boschetti, L., Abatzoglou, J. T. & Giglio, L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys. Res. Lett. 46, 7643–7653 (2019).
Google Scholar
Baker, A. R., French, M. & Linge, K. L. Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume. Geophys. Res. Lett. 33 L07805, https://doi.org/10.1029/2005GL024764 (2006).
Baker, A. R., Jickells, T. D., Witt, M. & Linge, K. L. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. 98, 43–58 (2006).
Google Scholar
Shelley, R. U., Morton, P. L. & Landing, W. M. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Res. Part II Top. Stud. Oceanogr. 116, 262–272 (2015).
Google Scholar
Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).
Google Scholar
Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 87, 273–282 (2003).
Google Scholar
Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J. & Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 6, 957–974 (2006).
Google Scholar
Roberts, G., Wooster, M. J. & Lagoudakis, E. Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 6, 849–866 (2009).
Google Scholar
Baker, A. R. & Jickells, T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Prog. Oceanogr. 158, 41–51 (2017).
Google Scholar
Chance, R., Jickells, T. D. & Baker, A. R. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).
Google Scholar
Myriokefalitakis, S., Nenes, A., Baker, A. R., Mihalopoulos, N. & Kanakidou, M. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study. Biogeosciences 13, 6519–6543 (2016).
Google Scholar
Kanakidou, M., Myriokefalitakis, S. & Tsigaridis, K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett. 13, 063004 (2018).
Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).
Google Scholar
McCann, K. S. et al. Landscape modification and nutrient‐driven instability at a distance. Ecol. Lett. 24, 398–414 (2021).
Google Scholar
Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).
Google Scholar
Fanning, K. A. Nutrient provinces in the sea: concentration ratios, reaction rate ratios, and ideal covariation. J. Geophys. Res. Oceans 97, 5693–5712 (1992).
Google Scholar
Ammerman, J. W., Hood, R. R., Case, D. A. & Cotner, J. B. Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography. Eos, Trans. Am. Geophys. Union 84, 165–170 (2003).
Google Scholar
Lomas, M. W., Bonachela, J. A., Levin, S. A. & Martiny, A. C. Impact of ocean phytoplankton diversity on phosphate uptake. Proc. Natl Acad. Sci. USA 111, 17540–17545 (2014).
Google Scholar
Richey, J. E. et al. (ORNL Distributed Active Archive Center, 2008).
Cochonneau, G. et al. The environmental observation and research project, ORE HYBAM, and the rivers of the Amazon basin. In Climate Variability and Change—Hydrological Impacts (eds Demuth, S. et al.) vol. 308, 44–50 (2006).
Source: Ecology - nature.com