in

Observed increasing water constraint on vegetation growth over the last three decades

  • 1.

    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529 (2005).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 3.

    Porporato, A., D’odorico, P., Laio, F., Ridolfi, L. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25, 1335–1348 (2002).

    Article 
    ADS 

    Google Scholar 

  • 4.

    Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evolution 2, 1897 (2018).

    Article 

    Google Scholar 

  • 5.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).

    Article 
    ADS 

    Google Scholar 

  • 6.

    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951 (2010).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 8.

    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 9.

    Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 10.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. change 6, 791–795 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 11.

    Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).

    Article 
    ADS 

    Google Scholar 

  • 12.

    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. change 9, 73 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 13.

    Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 14.

    Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 15.

    Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 16.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 17.

    Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 19.

    Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 20.

    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324 (2013).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 21.

    Jiao, W., Wang, L. & McCabe, M. F. Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ. 256, 112313 (2021).

    Article 
    ADS 

    Google Scholar 

  • 22.

    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 23.

    Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612–612 (2007).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 24.

    Chen, T., Werf, G., Jeu, R., Wang, G. & Dolman, A. A global analysis of the impact of drought on net primary productivity. Hydrol. Earth Syst. Sci. 17, 3885 (2013).

    Article 
    ADS 

    Google Scholar 

  • 25.

    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 26.

    Kreuzwieser, J. & Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant, Cell Environ. 37, 2245–2259 (2014).

    CAS 

    Google Scholar 

  • 27.

    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110 (2018).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 28.

    Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 29.

    Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 30.

    Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2012).

  • 31.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52 (2013).

    Article 
    ADS 

    Google Scholar 

  • 32.

    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17 (2013).

    Article 
    ADS 

    Google Scholar 

  • 33.

    Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 34.

    Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).

    Article 
    ADS 

    Google Scholar 

  • 35.

    Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 36.

    Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evolution 1, 1438–1445 (2017).

    Article 

    Google Scholar 

  • 38.

    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 39.

    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article 
    ADS 

    Google Scholar 

  • 40.

    Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 41.

    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202 (2017).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 42.

    Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 43.

    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 44.

    Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth-Sci. Rev. 196, 102870 (2019).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Cronk, J. K. & Fennessy, M. S. Wetland Plants: Biology and Ecology. (CRC press, 2016).

  • 46.

    Zohaib, M. & Choi, M. Satellite-based global-scale irrigation water use and its contemporary trends. Sci. Total Environ. 714, 136719 (2020).

  • 47.

    Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 48.

    Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2020).

  • 49.

    Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 50.

    Oliveira, P. J., Davin, E. L., Levis, S. & Seneviratne, S. I. Vegetation‐mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Glob. Change Biol. 17, 3453–3467 (2011).

    Article 
    ADS 

    Google Scholar 

  • 51.

    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).

    Article 

    Google Scholar 

  • 52.

    Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).

    Article 
    ADS 

    Google Scholar 

  • 53.

    Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Article 
    ADS 

    Google Scholar 

  • 54.

    Palmer, W. C. Meteorological Drought. Vol. 30 (Citeseer, 1965).

  • 55.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009).

  • 57.

    Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosyst. Environ. 126, 67–80 (2008).

    Article 

    Google Scholar 

  • 58.

    Gruber, A., Scanlon, T., Schalie, R. V. D., Wagner, W. & Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739 (2019).

    Article 
    ADS 

    Google Scholar 

  • 59.

    Dorigo, W. et al. ESA CCI Soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).

    Article 
    ADS 

    Google Scholar 

  • 60.

    Wagner, W. et al. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals) 7, 315–321 (2012).

  • 61.

    Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • 62.

    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    Article 
    ADS 

    Google Scholar 

  • 63.

    Tian, F. et al. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).

    Article 
    ADS 

    Google Scholar 

  • 64.

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 65.

    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).

    Article 
    ADS 

    Google Scholar 

  • 66.

    Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 67.

    Wu, D. et al. Time‐lag effects of global vegetation responses to climate change. Glob. Change Biol. 21, 3520–3531 (2015).

    Article 
    ADS 

    Google Scholar 

  • 68.

    Tei, S. & Sugimoto, A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob. Change Biol. 24, 4225–4237 (2018).

    Article 
    ADS 

    Google Scholar 

  • 69.

    Wen, Y. et al. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res.: Biogeosciences 124, 789–806 (2019).

    Article 
    ADS 

    Google Scholar 

  • 70.

    McKee, T. B., Doesken, N. J. & Kleist, J. in Proceedings of the 8th Conference on Applied Climatology. 179-183 (American Meteorological Society Boston, MA).

  • 71.

    Jiao, W., Tian, C., Chang, Q., Novick, K. A. & Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 268, 74–85 (2019).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies