in

Oilbirds disperse large seeds at longer distance than extinct megafauna

  • 1.

    Terborgh, J. et al. Tree recruitment in an empty forest. J. Ecol. 89, 1757–1768 (2008).

    Article  Google Scholar 

  • 2.

    Stevenson, P. The abundance of large ateline monkeys is positively associated with the diversity of plants regenerating in Neotropical forests. Biotropica 43, 512–519 (2011).

    Article  Google Scholar 

  • 3.

    Peres, C., Emilio, T., Schietti, J., Desmoulière, S. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113, 892–897 (2016).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 4.

    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 5.

    Chanthorn, W., Hartig, F., Brockelman, W. Y., Srisang, W., Nathalang, A. & Santon, J. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9 (2019).

  • 6.

    Davis, M. & Shaw, R. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 7.

    Corlett, R. T. Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica 41, 592–598 (2009).

    Article  Google Scholar 

  • 8.

    Duque, A., Stevenson, P. & Feeley, K. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl. Acad. Sci. 112, 10744–10749 (2015).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 9.

    Howe, H. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).

    Article  Google Scholar 

  • 10.

    Wright, S. J. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).

    PubMed  Article  ADS  Google Scholar 

  • 11.

    Sugiyama, A., Comita, L., Masaki, T., Condit, R. & Hubbell, S. Resolving the paradox of clumped seed dispersal: Positive density and distance dependence in a bat-dispersed species. Ecology 99, 2583–2591 (2018).

    PubMed  Article  Google Scholar 

  • 12.

    Bagchi, R. et al. Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Ecology 92, 1723–1729 (2011).

    PubMed  Article  Google Scholar 

  • 13.

    Clark, J.S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204-224 (1998)

  • 14.

    Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 15.

    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).

    PubMed  Article  Google Scholar 

  • 16.

    Abedi-Lartey, M., Dechmann, D. K. N., Wikelski, M., Scharf, A. K. & Fahr, J. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape. Glob. Ecol. Conserv. 7, 12–24 (2016).

    Article  Google Scholar 

  • 17.

    Baraloto, C., Forget, P. M. & Goldberg, D. E. Seed mass, seedling size and Neotropical tree seedling establishment. J. Ecol. 96, 1156–1166 (2005).

    Article  CAS  Google Scholar 

  • 18.

    Mack, A. L. An advantage of large seed size: tolerating rather than succumbing to seed predators. Biotropica 30, 604–608 (1998).

    Article  Google Scholar 

  • 19.

    Peres, C. A., Roosmalen, M. V., Levey, D. J., Silva, W. & Galetti, M. Primate frugivory in two species-rich Neotropical forests: implications for the demography of large-seeded plants in overhunted areas. In Seed dispersal and frugivory: ecology, evolution and conservation (eds. Levey Silva, D. J. W. & Galetti, M.) 407–421 (Wallingford: CAB International, 2002).

  • 20.

    Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).

    Article  Google Scholar 

  • 21.

    Doughty, C., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).

    CAS  Article  ADS  Google Scholar 

  • 22.

    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. Camb. Philos. Soc. 93, 845–862 (2018).

    PubMed  Article  Google Scholar 

  • 23.

    Pires, M., Guimarães, P., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2017).

    Article  Google Scholar 

  • 24.

    Bosque, C. & Parra, O. Digestive efficiency and rate of food passage in oilbird nestlings. The Condor 94, 557–571 (1992).

    Article  Google Scholar 

  • 25.

    Rojas-Lizarazo, G. Diet and reproduction in a high mountain oilbird (Steatornis caripensis) colony in Colombia. Ornitol. Colomb. 53–69 (2016).

  • 26.

    Stevenson, P., Cardona, L., Acosta Rojas, D., Henao Díaz, F. & Cardenas, S. Diet of oilbirds (Steatornis caripensis) in Cueva de los Guácharos National Park (Colombia): Temporal variation in fruit consumption, dispersal and seed morphology. Ornitol. Neotrop. 28, 295–307 (2017).

    Google Scholar 

  • 27.

    McAtee, W. L. Notes on the food of the Guacharo (Steatornis caripensis). Auk 39, 108–109 (1922).

    Article  Google Scholar 

  • 28.

    Holland, R. A., Wikelski, M., Kümmeth, F. & Bosque, C. The secret life of oilbirds: New insights into the movement ecology of a unique avian frugivore. PLoS ONE 4, e8264 (2009).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 29.

    Karubian, J. et al. Seed dispersal by Neotropical birds: Emerging patterns and underlying processes. Ornitol. Neotrop. 23, 9–24 (2012).

    Google Scholar 

  • 30.

    McKey, D. In Coevolution of animals and plants (eds. Gilben, L. E. & Raven, P. H.) 159–191 (University Texas Press, 1975).

  • 31.

    Cárdenas, S., Cardona, L. M., Echeverry-Galvis, M. & Stevenson, P. R. Movement patterns and habitat preference of oilbirds (Steatornis caripensis) in the southern Andes of Colombia. Avian Cons. Ecol. 15, 5 (2020).

    Google Scholar 

  • 32.

    Cárdenas, S., Echeverry-Galvis, M. & Stevenson, P. R. Seed dispersal effectiveness by oilbirds (Steatornis caripensis) in the Southern Andes of Colombia. Biotropica. https://doi.org/10.1111/btp.12908 (2020).

    Article  Google Scholar 

  • 33.

    Anderson, J. T., Nuttle, T., Saldaña Rojas, J. S., Pendergast, T. H. & Flecker, A. S. Extremely long-distance seed dispersal by an overfished Amazonian frugivore. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 278, 3329–3335 (2011).

    Google Scholar 

  • 34.

    Wood, C. A. The Polynesian fruit pigeon, Globicera pacifica, its food and digestive apparatus. Auk 41, 433–438 (1924).

    Article  Google Scholar 

  • 35.

    Stocker, G. C. & Irvine, A. K. Seed dispersal by cassowaries (Casuarius casuarius) in North Queensland’s Rainforests. Biotropica 15, 170–176 (1983).

    Article  Google Scholar 

  • 36.

    Gautier-Hion, A. et al. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65, 324–337 (1985).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 37.

    Lieberman, D., Lieberman, M. & Martin, C. Notes on seeds in elephant dung from Bia National Park Ghana. Biotropica 19, 365 (1987).

    Article  Google Scholar 

  • 38.

    Guillotin, M., Dubost, G. & Sabatier, D. Food choice and food competition among the three major primate species of French Guiana. J. Zool. 233, 551–579 (1994).

    Article  Google Scholar 

  • 39.

    Fragoso, J. M. V. & Huffman, J. M. Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir. J. Trop. Ecol. 16, 369–385 (2000).

    Article  Google Scholar 

  • 40.

    Naranjo, E. Ecology and conservation of Baird’s Tapir in Mexico. Trop. Conserv. Sci. 2, 140–158 (2009).

    Article  Google Scholar 

  • 41.

    Kitamura, S., Madsri, S. & Poonswad, P. Characteristics of hornbill-dispersed fruits in lowland Dipterocarp forests of southern Thailand. Raffles Bul. Zool. 24, 137–147 (2011).

    Google Scholar 

  • 42.

    Stevenson, P., Link, A., Onshuus, A., Quiroz, A. & Velasco, M. Estimation of seed shadows generated by Andean woolly monkeys (Lagothrix lagothricha lugens). Int. J. Primatol. 35, 1021–1036 (2014).

    Article  Google Scholar 

  • 43.

    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Global Ecol. Biogeogr. 24, 1269–1280 (2015).

    Article  Google Scholar 

  • 44.

    Norconk, M., Grafton, B. & Conklin-Brittain, N. Seed dispersal by Neotropical seed predators. Am. J. Primatol. 45, 103–126 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Lord, J. M. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecol. 29, 430–436 (2004).

    Article  Google Scholar 

  • 46.

    Vellend, M., Myers, J., Gardescu, S. & Marks, P. Dispersal of Trillium seeds by deer: Implications for long-distance migration of forest herbs. Ecology 84, 1067–1072 (2003).

    Article  Google Scholar 

  • 47.

    Baños-Villalba, A. et al. Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem. Sci. Rep. 7 (2017).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 48.

    Jansen, P. et al. Thieving rodent as substitute dispersers of megafaunal seeds. Proc. Natl. Acad. Sci. 109, 12610–12615 (2012).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 49.

    Blanco, G., Tella, J. L., Hiraldo, F. & Díaz-Luque, J. A. Multiple external seed dispersers challenge the megafaunal syndrome anachronism and the surrogate ecological function of livestock. Front. Ecol. Evol. 7, 328 (2019).

    Article  Google Scholar 

  • 50.

    Prada, C. & Stevenson, P. Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guácharos National Park, Huila, Colombia). Biotropica 48, 568–576 (2016).

    Article  Google Scholar 

  • 51.

    Bosque, C. & Parra, O. Digestive efficiency and rate of food passage in oilbird nestlings. The Condor 94, 557–571 (1992).

    Article  Google Scholar 

  • 52.

    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    Article  Google Scholar 

  • 53.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria 2014).

  • 54.

    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Glob. Ecol. Biogeogr. 24, 1269–1280 (2015).

    Article  Google Scholar 

  • 55.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (2019).


  • Source: Ecology - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species