in

On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors

[adace-ad id="91168"]
  • 1.

    Chavez, F. P. & Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).

    ADS  Article  Google Scholar 

  • 2.

    Auger, P.-A., Gorgues, T., Machu, E., Aumont, O. & Brehmer, P. What drives the spatial variability of primary productivity and matter fluxes in the north-west African upwelling system? A modelling approach. Biogeosciences 13, 6419–6440 (2016).

    ADS  Article  Google Scholar 

  • 3.

    Benazzouz, A. et al. An improved coastal upwelling index from sea surface temperature using satellite-based approach—The case of the Canary Current upwelling system. Cont. Shelf Res. 81, 38–54 (2014).

    ADS  Article  Google Scholar 

  • 4.

    Citeau, J., Finaud, L., Cammas, J. & Demarcq, H. Questions relative to ITCZ migrations over the tropical Atlantic ocean, sea surface temperature and Senegal River runoff. Meteorol. Atmos. Phys. 41, 181–190 (1989).

    ADS  Article  Google Scholar 

  • 5.

    Maloney, E. & Shaman, J. Intraseasonal variability of the West African Monsoon and Atlantic ITCZ. J. Clim. 21, 2898–2918 (2008).

    ADS  Article  Google Scholar 

  • 6.

    Herbland, A. & Voituriez, B. L. production primaire dans l’upwelling mauritanien en mars 1973. Cahiers ORSTOM 12, 187–201 (1974).

    CAS  Google Scholar 

  • 7.

    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

    Article  Google Scholar 

  • 8.

    Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Competition among fishermen and fish causes the collapse of Barents Sea capelin. PNAS 101, 11679–11684 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Fréon, P., Cury, P., Shannon, L. & Roy, C. Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: A review. Bull. Mar. Sci. 76, 385–462 (2005).

    Google Scholar 

  • 10.

    Schwartzlose, R. A. et al. Worldwide large-scale fluctuations of sardine and anchovy populations. Afr. J. Mar. Sci. 21, 289–347 (1999).

    Article  Google Scholar 

  • 11.

    Hofstede, R. T., Dickey-Collas, M., Mantingh, I. T. & Wague, A. The link between migration, the reproductive cycle and condition of Sardinella aurita off Mauritania, north-west Africa. J. Fish Biol. 71, 1293–1302 (2007).

    Article  Google Scholar 

  • 12.

    Zeeberg, J., Corten, A., Tjoe-Awie, P., Coca, J. & Hamady, B. Climate modulates the effects of Sardinella aurita fisheries off Northwest Africa. Fish. Res. 1, 65–75 (2008).

    Article  Google Scholar 

  • 13.

    Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M. Oceanography and Marine Biology, Vol. 47 (2009).

  • 14.

    Hays, G. C., Richardson, A. J. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Ndoye, S. et al. Dynamics of a “low-enrichment high-retention” upwelling center over the southern Senegal shelf. Geophys. Res. Lett. 44, 5034–5043 (2017).

    ADS  Article  Google Scholar 

  • 16.

    Behagle, N. et al. Acoustic distribution of discriminated micronektonic organisms from a bi-frequency processing: The case study of eastern Kerguelen oceanic waters. Prog. Oceanogr. 156, 276–289 (2017).

    Article  Google Scholar 

  • 17.

    Benoit-Bird, K. & Au, W. Diel migration dynamics of an island-associated sound-scattering layer. Deep Sea Res. Part I 51, 707–719 (2004).

    Article  Google Scholar 

  • 18.

    Sato, M. & Benoit-Bird, K. J. Spatial variability of deep scattering layers shapes the Bahamian mesopelagic ecosystem. Mar. Ecol. Prog. Ser. 580, 69–82 (2017).

    ADS  Article  Google Scholar 

  • 19.

    Algueró-Muñiz, M. et al. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS ONE 12, e0175851 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 20.

    Matlab R 2018a. The Math Works, Inc. (MATLAB & Simulink – MathWorks., 2018).

  • 21.

    Hegerl, G. C. et al. Causes of climate change over the historical record. Environ. Res. Lett. 14, 123006 (2019).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Belkin, I. M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207–213 (2009).

    ADS  Article  Google Scholar 

  • 23.

    Valdés, L. & Déniz-González, I. Oceanographic and biological features in the Canary Current Large Marine Ecosystem, Vol. 115 (2015).

  • 24.

    Gómez-Letona, M., Ramos, A. G., Coca, J. & Arístegui, J. Trends in primary production in the canary current upwelling system—A regional perspective comparing remote sensing models. Front. Mar. Sci. 4, 370 (2017).

    Article  Google Scholar 

  • 25.

    Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Benazzouz, A., Demarcq, H. & González-Nuevo, G. Oceanographic and biological features in the Canary current large marine ecosystem. (2015).

  • 27.

    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Hofmann, M., Worm, B., Rahmstorf, S. & Schellnhuber, H. J. Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ. Res. Lett. 6, 034035 (2011).

    ADS  Article  CAS  Google Scholar 

  • 30.

    Lewandowska, A. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Arístegui, J. et al. Sub-regional ecosystem variability in the Canary Current upwelling. Prog. Oceanogr. 83, 33–48 (2009).

    ADS  Article  Google Scholar 

  • 32.

    Demarcq, H. Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 83, 376–385 (2009).

    ADS  Article  Google Scholar 

  • 33.

    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. PNAS 113, 2964–2969 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 34.

    Jacob, B. G. et al. Major changes in diatom abundance, productivity, and net community metabolism in a windier and dryer coastal climate in the southern Humboldt Current. Prog. Oceanogr. 168, 196–209 (2018).

    ADS  Article  Google Scholar 

  • 35.

    Jacox, M. G., Hazen, E. L. & Bograd, S. J. optimal environmental conditions and anomalous ecosystem responses: Constraining bottom-up controls of phytoplankton biomass in the California current system. Sci. Rep. 6, 27612 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Wind strength and biological productivity in upwelling systems: An idealized study. Fish. Oceanogr. 12, 245–259 (2003).

    Article  Google Scholar 

  • 37.

    García-Reyes, M., Largier, J. L. & Sydeman, W. J. Synoptic-scale upwelling indices and predictions of phyto- and zooplankton populations. Prog. Oceanogr. 120, 177–188 (2014).

    ADS  Article  Google Scholar 

  • 38.

    Libralato, S., Coll, M., Tudela, S., Palomera, I. & Pranovi, F. Novel index for quantification of ecosystem effects of fishing as removal of secondary production. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps07224 (2008).

    Article  Google Scholar 

  • 39.

    Gasol, J. M., del Giorgio, P. A. & Duarte, C. M. Biomass distribution in marine planktonic communities. Limnol. Oceanogr. 42, 1353–1363 (1997).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Harfoot, M. B. J. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Wang, H., Morrison, W., Singh, A. & Weiss, H. General Mechanisms for Inverted Biomass Pyramids in Ecosystems. arXiv:0811.3657. [q-bio] (2008).

  • 42.

    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Ann. Rev. Mar. Sci. 8, 463–490 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Alcaraz, M., Felipe, J., Grote, U., Arashkevich, E. & Nikishina, A. Life in a warming ocean: Thermal thresholds and metabolic balance of arctic zooplankton. J. Plankton Res. 36, 3–10 (2014).

    Article  Google Scholar 

  • 44.

    Brochier, T. et al. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment. Prog. Oceanogr. 164, 12–27 (2018).

    ADS  Article  Google Scholar 

  • 45.

    Richardson, A., Schoeman, D., Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609–1612 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Braham, C.-B. & Corten, A. Pelagic fish stocks and their response to fisheries and environmental variation in the Canary Current large marine ecosystem. Oceanographic and biological features in the Canary Current Large Marine Ecosystem 197–213 (2015).

  • 47.

    Ba, K. et al. Resilience of key biological parameters of the Senegalese flat sardinella to overfishing and climate change. PLoS ONE 11, e0156143 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Thiaw, M. et al. Effect of environmental conditions on the seasonal and inter-annual variability of small pelagic fish abundance off North-West Africa: The case of both Senegalese sardinella. Fish. Oceanogr. https://doi.org/10.1111/fog.12218 (2017).

    Article  Google Scholar 

  • 49.

    Sarré, A. et al. Climate-driven shift of Sardinella aurita stock in Northwest Africa ecosystem as evidenced by robust spatial indicators [résumé]. In International conference ICAWA 2016 : extended book of abstract : the AWA project : ecosystem approach to the management of fisheries and the marine environment in West African waters (eds. Brehmer, P. et al.) 67–68 (SRFC/CSRP, 2017).

  • 50.

    Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).

    Article  Google Scholar 

  • 51.

    Beaugrand, G., Reid, P., Ibañez, F., Lindley, J. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 52.

    Lindley, J. A. & Daykin, S. Variations in the distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the north-eastern Atlantic Ocean and western European shelf waters. ICES J. Mar. Sci. 62, 869–877 (2005).

    Article  Google Scholar 

  • 53.

    Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).

    PubMed  Article  Google Scholar 

  • 54.

    Diogoul, N. et al. Fine-scale vertical structure of sound-scattering layers over an east border upwelling system and its relationship to pelagic habitat characteristics. Ocean Sci. 16, 65–81 (2020).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Brehmer, P. et al. Schooling behaviour of small pelagic fish: Phenotypic expression of independent stimuli. Mar. Ecol. Prog. Ser. 334, 263–272 (2007).

    ADS  Article  Google Scholar 

  • 56.

    Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).

    Article  Google Scholar 

  • 57.

    Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physical–biological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28, 1099–1105 (2006).

    Article  Google Scholar 

  • 58.

    Garzke, J., Ismar, S. M. H. & Sommer, U. Climate change affects low trophic level marine consumers: Warming decreases copepod size and abundance. Oecologia 177, 849–860 (2015).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiørboe, T. A global synthesis of seasonal temperature–size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999 (2016).

    Article  Google Scholar 

  • 60.

    Clark, C. W. & Levy, D. A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am. Nat. 131, 271–290 (1988).

    Article  Google Scholar 

  • 61.

    Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).

    Article  Google Scholar 

  • 62.

    Hansson, S. Variation in hydroacoustic abundance of pelagic fish. Fish. Res. 16, 203–222 (1993).

    Article  Google Scholar 

  • 63.

    Tiedemann, M. & Brehmer, P. Larval fish assemblages across an upwelling front: Indication for active and passive retention. Estuar. Coast. Shelf Sci. 187, 118–133 (2017).

    ADS  Article  Google Scholar 

  • 64.

    CCLME. Analyse diagnostique transfrontalière du Grand écosystème marin du courant des Canaries 144 (2016).

  • 65.

    Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Annu. Rev. Mar. Sci. 5, 371–392 (2013).

    Article  Google Scholar 

  • 66.

    Baldé, B. S. et al. Variability of key biological parameters of round sardinella Sardinella aurita and the effects of environmental changes. J. Fish Biol. 94, 391–401 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Binet, D. Rôle possible d’une intensification des alizés sur le changement de répartition des sardines et sardinelles le long de la côte Ouest africaine. Aquat. Living Resour. 1, 115–132 (1988).

    Article  Google Scholar 

  • 68.

    Berraho, A., Somoue, L., Hernández‐León, S. & Valdés, L. Zooplankton in the canary current large marine ecosystem. In Oceanographic and biological features in the Canary Current Large Marine Ecosystem Vol. 115, 183‐195 (IOC Technical Series, 2015).

  • 69.

    Ndour, I., Berraho, A., Fall, M., Ettahiri, O. & Sambe, B. Composition, distribution and abundance of zooplankton and ichthyoplankton along the Senegal-Guinea maritime zone (West Africa). Egypt. J. Aquat. Res. 44, 109–124 (2018).

    Article  Google Scholar 

  • 70.

    Sarré, A., Krakstad, J.-O., Brehmer, P. & Mbye, E. M. Spatial distribution of main clupeid species in relation to acoustic assessment surveys in the continental shelves of Senegal and The Gambia. Aquat. Living Resour. 31, 9 (2018).

    Article  Google Scholar 

  • 71.

    Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N. & Simmonds, E. J. Technical Report: ‘“Calibration of acoustic instruments for fish density estimation: A practical guide”’. J. Acoust. Soc. Am. 83, 831–832 (1987).

    Google Scholar 

  • 72.

    Perrot, Y. et al. Matecho: An open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).

    Article  Google Scholar 

  • 73.

    MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).

    Article  Google Scholar 

  • 74.

    Jech, J. M., Lawson, G. L. & Lavery, A. C. Wideband (15–260 kHz) acoustic volume backscattering spectra of Northern krill (Meganyctiphanes norvegica) and butterfish (Peprilus triacanthus). ICES J. Mar. Sci. 74, 2249–2261 (2017).

    Article  Google Scholar 

  • 75.

    Madureira, L. S. P., Everson, I. & Murphy, E. J. Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers. J. Plankton Res. 15, 787–802 (1993).

    Article  Google Scholar 

  • 76.

    Brehmer, P., Georgakarakos, S., Josse, E., Trygonis, V. & Dalen, J. Adaptation of fisheries sonar for monitoring schools of large pelagic fish: Dependence of schooling behaviour on fish finding efficiency. Aquat. Living Resour. 20, 377–384 (2007).

    Article  Google Scholar 

  • 77.

    D’Elia, L. et al. A longitudinal study of the teacch program in different settings: The potential benefits of low intensity intervention in preschool children with autism spectrum disorder. J. Autism Dev. Disord. 44, 615–626 (2014).

    PubMed  Article  Google Scholar 

  • 78.

    Zwolinski, J., Morais, A., Marques, V., Stratoudakis, Y. & Fernandes, P. G. Diel variation in the vertical distribution and schooling behaviour of sardine (Sardina pilchardus) off Portugal. ICES J. Mar. Sci. 64, 963–972 (2007).

    Article  Google Scholar 

  • 79.

    Ayoubi, S. E. et al. Estimation of target strength of Sardina pilchardus and Sardinella aurita by theoretical approach. Fish. Sci. 82, 417–423 (2016).

    Article  CAS  Google Scholar 

  • 80.

    Saunders, R. A., Fielding, S., Thorpe, S. E. & Tarling, G. A. School characteristics of mesopelagic fish at South Georgia. Deep Sea Res. Part I 81, 62–77 (2013).

    Article  Google Scholar 

  • 81.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  • 82.

    Suppiah, R. & Hennessy, K. J. Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. Int. J. Climatol. 18, 1141–1164 (1998).

    Article  Google Scholar 

  • 83.

    Cotter, J. A selection of nonparametric statistical methods for assessing trends in trawl survey indicators as part of an ecosystem approach to fisheries management (EAFM). Aquat. Living Resour. 22, 173–185 (2009).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Could lab-grown plant tissue ease the environmental toll of logging and agriculture?

    How to get more electric cars on the road