in

Ontogenetic shifts from social to experiential learning drive avian migration timing

  • 1.

    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552–1242552 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).

    PubMed 

    Google Scholar 

  • 3.

    Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).

    PubMed 

    Google Scholar 

  • 4.

    Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 20, 741–749 (2018).

    Google Scholar 

  • 5.

    Fryxell, J. M., Greever, J. & Sinclair, A. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).

    Google Scholar 

  • 6.

    Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188–4 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170009–20170016 (2018).

    Google Scholar 

  • 9.

    Campioni, L., Dias, M. P., Granadeiro, J. P. & Catry, P. An ontogenetic perspective on migratory strategy of a long‐lived pelagic seabird: timings and destinations change progressively during maturation. J. Anim. Ecol. 89, 29–43 (2020).

    PubMed 

    Google Scholar 

  • 10.

    Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 1–17 (2014).

    MathSciNet 

    Google Scholar 

  • 11.

    Thorup, K. et al. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl Acad. Sci. USA 104, 18115–18119 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 34, e12599–7 (2018).

    Google Scholar 

  • 14.

    Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Kendal, R. L., Coe, R. L. & Laland, K. N. Age differences in neophilia, exploration, and innovation in family groups of callitrichid monkeys. Am. J. Primatol. 66, 167–188 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    French, J. B. et al. Whooping cranes past and present. in Whooping Cranes (eds. French, J. B. Jr, Conserve, S. J. & Austin, J. E.) (Academic Publisher, 2019).

  • 17.

    Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory Whooping Cranes Grus americana. Bird. Conserv. Int. 20, 43–54 (2009).

    Google Scholar 

  • 18.

    Sorte, F. A. L. & Graham, C. H. Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. J. Anim. Ecol. 90, 343–355 (2021).

    PubMed 

    Google Scholar 

  • 19.

    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    PubMed 

    Google Scholar 

  • 20.

    Xu, F. & Si, Y. The frost wave hypothesis: how the environment drives autumn departure of migratory waterfowl. Ecol. Indic. 101, 1018–1025 (2019).

    Google Scholar 

  • 21.

    Nuijten, R. J. M. et al. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122 (2013).

    Google Scholar 

  • 22.

    Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 485–18 (2019).

    Google Scholar 

  • 23.

    Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).

    ADS 

    Google Scholar 

  • 24.

    Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).

    PubMed 

    Google Scholar 

  • 25.

    Thurfjell, H., Ciuti, S. & Boyce, M. S. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS ONE 12, e0178082–20 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Reader, S. M. & Laland, K. N. Primate innovation: sex, age and social rank differences. Int. J. Primatol. 22, 787–805 (2001).

    Google Scholar 

  • 27.

    Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not? Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).

    Google Scholar 

  • 30.

    Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).

    Google Scholar 

  • 32.

    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Google Scholar 

  • 33.

    Gurarie, E. et al. Tactical departures and strategic arrivals: divergent effects of climate and weather on caribou spring migrations. Ecosphere 10, 407–432 (2019).

    Google Scholar 

  • 34.

    Burnside, R. J., Salliss, D., Collar, N. J. & Dolman, P. M. Birds use individually consistent temperature cues to time their migration departure. Proc. Natl Acad. Sci. USA 118, e2026378118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Whitehead, H. Conserving and managing animals that learn socially and share cultures. Learn. Behav. 38, 329–336 (2010).

    PubMed 

    Google Scholar 

  • 36.

    Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2004).

    Google Scholar 

  • 37.

    Roth, T. C. II & Krochmal, A. R. The role of age-specific learning and experience for turtles navigating a changing landscape. Curr. Biol. 25, 333–337 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green‐wave surfing for a migratory ungulate. Glob. Change Biol. 23, 239–11 (2020).

    Google Scholar 

  • 40.

    Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).

    Google Scholar 

  • 41.

    Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130195–20130195 (2014).

    Google Scholar 

  • 42.

    Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 65, 502–510 (2017).

    Google Scholar 

  • 43.

    Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2010).

    PubMed 

    Google Scholar 

  • 44.

    Paradis, E., Claude, J. & Strimmer, K. Ape: analyses of phylogenetics and evolution in {R} language. Bioinformatics 20, 289–290 (2004).

    CAS 

    Google Scholar 

  • 45.

    Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach Vol. 72 (Springer, 1998).

  • 46.

    Nally, R. M., Duncan, R. P., Thomson, J. R. & Yen, J. D. L. Model selection using information criteria, but is the “best” model any good? J. Appl. Ecol. 55, 1441–1444 (2017).

    Google Scholar 

  • 47.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 48.

    Fox, J. & Weisberg, S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J. Stat. Softw. 87, 1–27 (2018).

    Google Scholar 

  • 49.

    “R Core Team”. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).

  • 50.

    Abrahms, B., Teitelbaum, C., Mueller, T. & Converse, S. Data from: ontogenetic shifts from social to experiential learning drive avian migration timing. Movebank Data Repository https://doi.org/10.5441/001/1.t23vm852 (2021).

  • 51.

    Abrahms, B. Code from: ontogenetic shifts from social to experiential learning drive avian migration timing. Github Repository. https://doi.org/10.5281/zenodo.5719357 (2021).


  • Source: Ecology - nature.com

    New visions for better transportation

    The power of economics to explain and shape the world