Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552–1242552 (2014).
Google Scholar
Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).
Google Scholar
Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).
Google Scholar
Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 20, 741–749 (2018).
Fryxell, J. M., Greever, J. & Sinclair, A. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).
Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188–4 (2008).
Google Scholar
Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).
Google Scholar
Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170009–20170016 (2018).
Campioni, L., Dias, M. P., Granadeiro, J. P. & Catry, P. An ontogenetic perspective on migratory strategy of a long‐lived pelagic seabird: timings and destinations change progressively during maturation. J. Anim. Ecol. 89, 29–43 (2020).
Google Scholar
Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 1–17 (2014).
Google Scholar
Thorup, K. et al. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl Acad. Sci. USA 104, 18115–18119 (2007).
Google Scholar
Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).
Google Scholar
Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 34, e12599–7 (2018).
Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).
Google Scholar
Kendal, R. L., Coe, R. L. & Laland, K. N. Age differences in neophilia, exploration, and innovation in family groups of callitrichid monkeys. Am. J. Primatol. 66, 167–188 (2005).
Google Scholar
French, J. B. et al. Whooping cranes past and present. in Whooping Cranes (eds. French, J. B. Jr, Conserve, S. J. & Austin, J. E.) (Academic Publisher, 2019).
Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory Whooping Cranes Grus americana. Bird. Conserv. Int. 20, 43–54 (2009).
Sorte, F. A. L. & Graham, C. H. Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. J. Anim. Ecol. 90, 343–355 (2021).
Google Scholar
Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
Google Scholar
Xu, F. & Si, Y. The frost wave hypothesis: how the environment drives autumn departure of migratory waterfowl. Ecol. Indic. 101, 1018–1025 (2019).
Nuijten, R. J. M. et al. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122 (2013).
Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 485–18 (2019).
Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).
Google Scholar
Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).
Google Scholar
Thurfjell, H., Ciuti, S. & Boyce, M. S. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS ONE 12, e0178082–20 (2017).
Google Scholar
Reader, S. M. & Laland, K. N. Primate innovation: sex, age and social rank differences. Int. J. Primatol. 22, 787–805 (2001).
Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).
Google Scholar
Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).
Google Scholar
Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not? Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).
Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).
Google Scholar
Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
Gurarie, E. et al. Tactical departures and strategic arrivals: divergent effects of climate and weather on caribou spring migrations. Ecosphere 10, 407–432 (2019).
Burnside, R. J., Salliss, D., Collar, N. J. & Dolman, P. M. Birds use individually consistent temperature cues to time their migration departure. Proc. Natl Acad. Sci. USA 118, e2026378118 (2021).
Google Scholar
Whitehead, H. Conserving and managing animals that learn socially and share cultures. Learn. Behav. 38, 329–336 (2010).
Google Scholar
Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2004).
Roth, T. C. II & Krochmal, A. R. The role of age-specific learning and experience for turtles navigating a changing landscape. Curr. Biol. 25, 333–337 (2015).
Google Scholar
Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).
Google Scholar
Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green‐wave surfing for a migratory ungulate. Glob. Change Biol. 23, 239–11 (2020).
Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).
Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130195–20130195 (2014).
Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 65, 502–510 (2017).
Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2010).
Google Scholar
Paradis, E., Claude, J. & Strimmer, K. Ape: analyses of phylogenetics and evolution in {R} language. Bioinformatics 20, 289–290 (2004).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach Vol. 72 (Springer, 1998).
Nally, R. M., Duncan, R. P., Thomson, J. R. & Yen, J. D. L. Model selection using information criteria, but is the “best” model any good? J. Appl. Ecol. 55, 1441–1444 (2017).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Fox, J. & Weisberg, S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J. Stat. Softw. 87, 1–27 (2018).
“R Core Team”. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
Abrahms, B., Teitelbaum, C., Mueller, T. & Converse, S. Data from: ontogenetic shifts from social to experiential learning drive avian migration timing. Movebank Data Repository https://doi.org/10.5441/001/1.t23vm852 (2021).
Abrahms, B. Code from: ontogenetic shifts from social to experiential learning drive avian migration timing. Github Repository. https://doi.org/10.5281/zenodo.5719357 (2021).
Source: Ecology - nature.com