Brown, J. H. & Maurer, B. A. Macroecology: the division of food and space among species on continents. Science 243, 1145–1150 (1989).
Google Scholar
Gaston, K. J., Robinson, D. & Chown, S. L. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).
Google Scholar
Chown, S. L. & Gaston, K. J. Macrophysiology–progress and prospects. Funct. Ecol. 30, 330–344 (2016).
Google Scholar
Avise, J. C. Phylogeography: the History and Formation of Species (Harvard University Press, 2000).
Ebach, M. C. Origins of Biogeography. Vol. 13 (Springer, 2015).
Brundin, L. On the real nature of transantarctic relationships. Evolution 19, 496–505 (1965).
Beheregaray, L. B. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol. Ecol. 17, 3754–3774 (2008).
Google Scholar
Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).
Google Scholar
Gaston, K. J. & Blackburn, T. M. A critique for macroecology. Oikos 84, 353–368 (1999).
Google Scholar
Lovegrove, B. G. The zoogeography of mammalian basal metabolic rate. Am. Nat. 156, 201–219 (2000).
Google Scholar
Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).
Google Scholar
Chown, S. L. & Gaston, K. J. Macrophysiology for a changing world. Proc. Biol. Sci. 275, 1469–1478 (2008).
Google Scholar
Kerr, J. T., Kharouba, H. M. & Currie, D. J. The macroecological contribution to global change solutions. Science 316, 1581–1584 (2007).
Google Scholar
Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: Emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017). This study coined the term ‘macrogenetics’ and illustrated, through three study examples, how shifting toward macrogenetics should generate new perspectives and theories concerning genetic diversity patterns.
Google Scholar
Blanchet, S. et al. A river runs through it: the causes, consequences, and management of intraspecific diversity in river networks. Evol. Appl. 13, 1195–1213 (2020).
Google Scholar
Frankham, R. Resolving conceptual issues in conservation genetics: the roles of laboratory species and meta-analyses. Hereditas 130, 195–201 (2004).
Google Scholar
Arnqvist, G. & Wooster, D. Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol. Evol. 10, 236–240 (1995).
Google Scholar
Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. Biol. Sci. 285, 20172746 (2018).
Google Scholar
Pelletier, T. A. & Carstens, B. C. Geographical range size and latitude predict population genetic structure in a global survey. Biol. Lett. 14, 20170566 (2018).
Google Scholar
Miraldo, A. et al. An anthropocene map of genetic diversity. Science 353, 1532–1535 (2016). This paper is thought to be the first published study to massively repurpose public mtDNA sequences to explore global genetic patterns (100,791 sequences from >4,500 terrestrial mammal and amphibian species).
Google Scholar
Yiming, L. et al. Latitudinal gradients in genetic diversity and natural selection at a highly adaptive gene in terrestrial mammals. Ecography 44, 206–218 (2021). This study found that adaptive IGV is higher at low latitudes and in smaller mammal species using repurposed MHC gene data from 93 mammal species.
Google Scholar
Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat. Commun. 11, 692 (2020). This study repurposed 58,565 public mtDNA sequences from 5,912 freshwater and marine fish to explore the effects of environmental drivers (temperature, species diversity) on intraspecific genetic diversity.
Google Scholar
Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020). This study revealed a negative effect of past rapid climate change and a positive effect of interannual precipitation variability in shaping the genetic diversity of terrestrial mammals using 46,965 mtDNA sequences.
Google Scholar
Barrow, L. N., da Fonseca, E. M., Thompson, C. E. P. & Carstens, B. C. Predicting amphibian intraspecific diversity with machine learning: Challenges and prospects for integrating traits, geography, and genetic data. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13303 (2020).
Google Scholar
De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021). This study found weak support for latitudinal IGV gradients, taxonomic-specific effects of temperature stability and life-history traits, and higher IGV in animals compared to plants using microsatellite and amplified fragment length polymorphism data from 8,386 local populations from 727 animal and plant species.
Google Scholar
Schmidt, C., Domaratzki, M., Kinnunen, R. P., Bowman, J. & Garroway, C. J. Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc. Biol. Sci. 287, 20192497 (2020). This study used archived microsatellite data from 85 studies (66 species) to explore the effects of urbanization in mammals and birds.
Google Scholar
Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55–67 (2020). The authors of this article conducted spatial and temporal analysis of the effects of humans on animal genetic diversity worldwide, by repurposing 175,247 mtDNA sequences from >17,000 animal species.
Google Scholar
Taberlet, P. et al. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15, 1439–1448 (2012). This paper reports a Class I macrogenetic study based on amplified fragment length polymorphism genetic data from 27 alpine plant species that tested whether genetic and species diversities co-vary.
Google Scholar
Manel, S. et al. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol. 21, 3729–3738 (2012).
Google Scholar
Gugerli, F. et al. Relationships among levels of biodiversity and the relevance of intraspecific diversity in conservation – a project synopsis. Perspect. Plant. Ecol. Evol. Syst. 10, 259–281 (2008).
Google Scholar
Schlaepfer, D. R., Braschler, B., Rusterholz, H.-P. & Baur, B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9, e02488 (2018).
Google Scholar
González, A. V., Gómez-Silva, V., Ramírez, M. J. & Fontúrbel, F. E. Meta-analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv. Biol. 34, 711–720 (2020).
Google Scholar
Ratnasingham, S. & Hebert, P. D. N. Bold: the barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
Google Scholar
Theodoridis, S., Rahbek, C. & Nogues-Bravo, D. Exposure of mammal genetic diversity to mid-21st century global change. Ecography 44, 817–831 (2021).
Google Scholar
Rissler, L. J. Union of phylogeography and landscape genetics. Proc. Natl Acad. Sci. USA 113, 8079–8086 (2016).
Google Scholar
Hubbell, S. P. The unified neutral theory of biodiversity and biogeography (Princeton University Press, 2001).
Haldane, J. B. S. A mathematical theory of natural and artificial selection, Part V: selection and mutation. Math. Proc. Camb. Philos. Soc. 23, 838–844 (1927).
Google Scholar
Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).
Google Scholar
Fisher, R. A. On the dominance ratio. Proc. R. Soc. Edinburgh 42, 321–341 (1922).
Google Scholar
Kimura, M. & Weiss, G. H. The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–576 (1964).
Google Scholar
Kingman, J. F. C. The coalescent. Stoch. Process. Their Appl. 13, 235–248 (1982).
Google Scholar
Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).
Google Scholar
Soulé, M. E. in Molecular Evolution (ed. Ayala, F. J.) 60–77 (Sinauer Associates, 1976).
Brown, A. H. Isozymes, plant population genetic structure and genetic conservation. Tag. Theor. Appl. Genet. Theor. Angew. Genet. 52, 145–157 (1978).
Google Scholar
Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986).
Google Scholar
Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).
Google Scholar
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. & Johnson, E. A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17, 240–248 (2007).
Google Scholar
Carroll, E. L. et al. Genetic and genomic monitoring with minimally invasive sampling methods. Evol. Appl. 11, 1094–1119 (2018).
Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321 (2003).
Google Scholar
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
Google Scholar
Gauthier, J. et al. Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland. Mol. Ecol. Resour. 20, 1191–1205 (2020).
Google Scholar
Wandeler, P., Hoeck, P. E. A. & Keller, L. F. Back to the future: museum specimens in population genetics. Trends Ecol. Evol. 22, 634–642 (2007).
Google Scholar
Strasser, B. J. The experimenter’s museum: GenBank, natural history, and the moral economies of biomedicine. Isis 102, 60–96 (2011).
Google Scholar
Whitlock, M. C. Data archiving in ecology and evolution: best practices. Trends Ecol. Evol. 26, 61–65 (2011).
Google Scholar
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Google Scholar
Deck, J. et al. The Genomic Observatories Metadatabase (GeOMe): A new repository for field and sampling event metadata associated with genetic samples. PLoS Biol. 15, e2002925 (2017).
Google Scholar
R Core Team. R: a language and environment for statistical computing, R Foundation for Statistical Computing http://www.r-project.org/index.html (2021).
Manel, S. & Holderegger, R. Ten years of landscape genetics. Trends Ecol. Evol. 28, 614–621 (2013).
Google Scholar
Prunier, J. G., Colyn, M., Legendre, X., Nimon, K. F. & Flamand, M. C. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Mol. Ecol. 24, 263–283 (2015).
Google Scholar
Stanley, R. R. E. et al. A climate-associated multispecies cryptic cline in the northwest Atlantic. Sci. Adv. 4, eaaq0929 (2018).
Google Scholar
Fenderson, L. E., Kovach, A. I. & Llamas, B. Spatiotemporal landscape genetics: investigating ecology and evolution through space and time. Mol. Ecol. 29, 218–246 (2020).
Google Scholar
Daza, J. M., Castoe, T. A. & Parkinson, C. L. Using regional comparative phylogeographic data from snake lineages to infer historical processes in middle America. Ecography 33, 343–354 (2010).
Riddle, B. R. Comparative phylogeography clarifies the complexity and problems of continental distribution that drove A. R. Wallace to favor islands. Proc. Natl Acad. Sci. USA 113, 7970–7977 (2016).
Google Scholar
Carstens, B. C., Morales, A. E., Field, K. & Pelletier, T. A. A global analysis of bats using automated comparative phylogeography uncovers a surprising impact of Pleistocene glaciation. J. Biogeogr. 45, 1795–1805 (2018).
Google Scholar
Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).
Google Scholar
Smith, B. T. et al. The drivers of tropical speciation. Nature 515, 406–409 (2014).
Google Scholar
Ballin, M., Barcaroli, G., Masselli, M. & Scarnó, M. Redesign Sample for Land Use/Cover Area Frame Survey (LUCAS) 2018 (EU Publications, 2018).
Buchhorn, M. et al. Copernicus global land cover layers — Collection 2. Remote. Sens. 12, 1044 (2020).
Google Scholar
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090-184. Ecology 90, 2648–2648 (2009).
Google Scholar
Tedesco, P. A. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).
Google Scholar
Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity: species diversity and genetic diversity. Ecol. Lett. 8, 767–781 (2005).
Google Scholar
Fourtune, L., Paz-Vinas, I., Loot, G., Prunier, J. G. & Blanchet, S. Lessons from the fish: a multi-species analysis reveals common processes underlying similar species-genetic diversity correlations. Freshw. Biol. 61, 1830–1845 (2016).
Google Scholar
Bertin, A. et al. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol. Ecol. 26, 431–443 (2017).
Google Scholar
Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).
Google Scholar
Schmidt, C., Dray, S. & Garroway, C. J. Genetic and species-level biodiversity patterns are linked by demography and ecological opportunity. bioRxiv https://doi.org/10.1101/2020.06.03.132092 (2021).
Google Scholar
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Google Scholar
Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).
Google Scholar
Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).
Google Scholar
Schmidt, C. & Garroway, C. J. The conservation utility of mitochondrial genetic diversity in macrogenetic research. Conserv. Genet. 22, 323–327 (2021).
Google Scholar
Gratton, P. et al. Which latitudinal gradients for genetic diversity? Trends Ecol. Evol. 32, 724–726 (2017). This response to Miraldo et al.20 identified a limitation of that article in that it did not account for the decay of genetic similarity with distance and represents the first critique of the downsides of the macrogenetic approach and the need for rigorous statistics.
Google Scholar
Loveless, M. D. & Hamrick, J. L. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15, 65–95 (1984).
Google Scholar
Hu, Y. et al. Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Sci. Adv. 7, eabd5725 (2021).
Google Scholar
Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
Google Scholar
Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).
Google Scholar
Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).
Google Scholar
Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12, 1505–1512 (2019). This study estimated the magnitude of the loss of genetic variation over a century-scale using microsatellite data from 91 species.
Google Scholar
Schmidt, C. & Garroway, C. J. The population genetics of urban and rural amphibians in north America. Mol. Ecol. https://doi.org/10.1111/mec.16005 (2021).
Google Scholar
Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572 (2006).
Google Scholar
Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 18, 4541–4550 (2009).
Google Scholar
Allio, R., Donega, S., Galtier, N. & Nabholz, B. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34, 2762–2772 (2017).
Google Scholar
Almeida-Rocha, J. M., Soares, L. A. S. S., Andrade, E. R., Gaiotto, F. A. & Cazetta, E. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: a global meta-analysis. Mol. Ecol. 29, 4812–4822 (2020).
Google Scholar
Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19, 4179–4191 (2010).
Google Scholar
Paz-Vinas, I. et al. Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecol. Lett. 24, 1282–1284 (2021).
Google Scholar
Crandall, E. D. et al. The molecular biogeography of the Indo-Pacific: testing hypotheses with multispecies genetic patterns. Glob. Ecol. Biogeogr. 28, 943–960 (2019).
Google Scholar
Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27, 1332–1334 (2011).
Google Scholar
Guillaume, F. & Rougemont, J. Nemo: an evolutionary and population genetics programming framework. Bioinformatics 22, 2556–2557 (2006).
Google Scholar
Phillips, J. D., French, S. H., Hanner, R. H. & Gillis, D. J. HACSim: an R package to estimate intraspecific sample sizes for genetic diversity assessment using haplotype accumulation curves. PeerJ Comput. Sci. 6, e243 (2020).
Google Scholar
Gratton, P. et al. A world of sequences: can we use georeferenced nucleotide databases for a robust automated phylogeography? J. Biogeogr. 44, 475–486 (2017).
Google Scholar
Kimura, M. On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962).
Google Scholar
Baguette, M. & Van Dyck, H. Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc. Ecol. 22, 1117–1129 (2007).
Google Scholar
Crow, J. F. & Aoki, K. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc. Natl Acad. Sci. USA 81, 6073–6077 (1984).
Google Scholar
Lanner, R. Why do trees live so long? Ageing Res. Rev. 1, 653–671 (2002).
Google Scholar
Nabholz, B., Mauffrey, J.-F., Bazin, E., Galtier, N. & Glemin, S. Determination of mitochondrial genetic diversity in mammals. Genetics 178, 351–361 (2008).
Google Scholar
Lasne, C., Heerwaarden, B., Sgrò, C. M. & Connallon, T. Quantifying the relative contributions of the X chromosome, autosomes, and mitochondrial genome to local adaptation. Evolution 73, 262–277 (2019).
Google Scholar
Phillips, J. D., Gillis, D. J. & Hanner, R. H. Incomplete estimates of genetic diversity within species: implications for DNA barcoding. Ecol. Evol. 9, 2996–3010 (2019).
Google Scholar
Humphries, P. & Winemiller, K. O. Historical impacts on river fauna, shifting baselines, and challenges for restoration. BioScience 59, 673–684 (2009).
Google Scholar
Stoffel, M. A. et al. Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history. Nat. Commun. 9, 4836 (2018).
Google Scholar
Collier-Robinson, L., Rayne, A., Rupene, M., Thoms, C. & Steeves, T. Embedding indigenous principles in genomic research of culturally significant species: a conservation genomics case study. N. Z. J. Ecol. 43, 3389 (2019).
Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).
Google Scholar
Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).
Google Scholar
Pope, L. C., Liggins, L., Keyse, J., Carvalho, S. B. & Riginos, C. Not the time or the place: the missing spatio-temporal link in publicly available genetic data. Mol. Ecol. 24, 3802–3809 (2015).
Google Scholar
Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).
Google Scholar
Sibbett, B., Rieseberg, L. H. & Narum, S. The genomic observatories metadatabase. Mol. Ecol. Resour. 20, 1453–1454 (2020).
Google Scholar
Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2020).
Google Scholar
Cornwell, W. K., Pearse, W. D., Dalrymple, R. L. & Zanne, A. E. What we (don’t) know about global plant diversity. Ecography 42, 1819–1831 (2019).
Google Scholar
Li, X. et al. Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157–166 (2015).
Google Scholar
Vasquez-Gross, H. A. et al. CartograTree: connecting tree genomes, phenotypes and environment. Mol. Ecol. Resour. 13, 528–537 (2013).
Google Scholar
Lawrence, E. R. et al. Geo-referenced population-specific microsatellite data across American continents, the MacroPopGen Database. Sci. Data 6, 14 (2019). This paper reports a compilation of georeferenced vertebrate microsatellite data, summary statistics and meta-data across the Americas for 897 species and 9,090 genetically distinct populations.
Google Scholar
Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).
Google Scholar
Barber, P. H. et al. Advancing biodiversity research in developing countries: the need for changing paradigms. Bull. Mar. Sci. 90, 187–210 (2014).
Google Scholar
Bork, P. et al. Tara Oceans. Tara Oceans studies plankton at planetary scale. Introduction. Science 348, 873–873 (2015).
Google Scholar
Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).
Google Scholar
Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).
Google Scholar
Holmes, M. W. et al. Natural history collections as windows on evolutionary processes. Mol. Ecol. 25, 864–881 (2016).
Google Scholar
Boukhdoud, L. et al. First DNA sequence reference library for mammals and plants of the Eastern Mediterranean Region. Genome 64, 39–49 (2021).
Google Scholar
Colella, J. P. et al. The Open-Specimen movement. BioScience 71, 405–414 (2020).
Google Scholar
Wright, S. Correlation and causation. J. Agric. Res. 20, 557–585 (1921).
Fourtune, L. et al. Inferring causalities in landscape genetics: an extension of Wright’s causal modeling to distance matrices. Am. Nat. 191, 491–508 (2018).
Google Scholar
Paz-Vinas, I., Loot, G., Stevens, V. M. & Blanchet, S. Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Mol. Ecol. 24, 4586–4604 (2015).
Google Scholar
Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Proença, V. et al. Global biodiversity monitoring: From data sources to Essential Biodiversity Variables. Biol. Conserv. 213, 256–263 (2017).
Google Scholar
Ve˅trovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).
Google Scholar
Hanson, J. O. et al. Conservation planning for adaptive and neutral evolutionary processes. J. Appl. Ecol. 57, 2159–2169 (2020).
Google Scholar
Xuereb, A., D’Aloia, C. C., Andrello, M., Bernatchez, L. & Fortin, M. Incorporating putatively neutral and adaptive genomic data into marine conservation planning. Conserv. Biol. 35, 909–920 (2021).
Google Scholar
Carvalho, S. B., Torres, J., Tarroso, P. & Velo-Antón, G. Genes on the edge: a framework to detect genetic diversity imperiled by climate change. Glob. Change Biol. 25, 4034–4047 (2019).
Google Scholar
Adams, W. M. & Sandbrook, C. Conservation, evidence and policy. Oryx 47, 329–335 (2013).
Google Scholar
Laikre, L. et al. Post-2020 goals overlook genetic diversity. Science 367, 1083.2–1085 (2020).
Google Scholar
Thomson, A. I. et al. Charting a course for genetic diversity in the UN Decade of Ocean Science. Evol. Appl. 14, 1497–1518 (2021).
Google Scholar
Hoban, S. M. et al. Bringing genetic diversity to the forefront of conservation policy and management. Conserv. Genet. Resour. 5, 593–598 (2013).
Google Scholar
Carroll, S. R. et al. The CARE principles for indigenous data governance. Data Sci. J. 19, 43 (2020).
Google Scholar
Fargeot, L. et al. Patterns of epigenetic diversity in two sympatric fish species: genetic vs. environmental determinants. Genes 12, 107 (2021).
Google Scholar
Gaggiotti, O. E. et al. Diversity from genes to ecosystems: a unifying framework to study variation across biological metrics and scales. Evol. Appl. 11, 1176–1193 (2018).
Google Scholar
Waples, R. S., Antao, T. & Luikart, G. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197, 769–780 (2014).
Google Scholar
Waples, R. S. & Yokota, M. Temporal estimates of effective population size in species with overlapping generations. Genetics 175, 219–233 (2007).
Google Scholar
Antao, T., Pérez-Figueroa, A. & Luikart, G. Early detection of population declines: high power of genetic monitoring using effective population size estimators. Evol. Appl. 4, 144–154 (2011).
Google Scholar
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
Google Scholar
Phillips, J. D., Gwiazdowski, R. A., Ashlock, D. & Hanner, R. An exploration of sufficient sampling effort to describe intraspecific DNA barcode haplotype diversity: examples from the ray-finned fishes (Chordata: Actinopterygii). DNA Barcodes 3, 66–73 (2015).
Google Scholar
Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).
Google Scholar
Jordan, R., Breed, M. F., Prober, S. M., Miller, A. D. & Hoffmann, A. A. How well do revegetation plantings capture genetic diversity? Biol. Lett. 15, 20190460 (2019).
Google Scholar
Holderegger, R. & Di Giulio, M. The genetic effects of roads: a review of empirical evidence. Basic. Appl. Ecol. 11, 522–531 (2010).
Google Scholar
Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One 7, e45170 (2012).
Google Scholar
Jackson, T. M., Roegner, G. C. & O’Malley, K. G. Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol. Ecol. 27, 352–368 (2018).
Google Scholar
Hoban, S. et al. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol. Appl. 7, 984–998 (2014).
Google Scholar
Anderson, C. N. K., Ramakrishnan, U., Chan, Y. L. & Hadly, E. A. Serial SimCoal: a population genetics model for data from multiple populations and points in time. Bioinformatics 21, 1733–1734 (2005).
Google Scholar
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
Google Scholar
Elbrecht, V., Vamos, E. E., Steinke, D. & Leese, F. Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ 6, e4644 (2018).
Google Scholar
Shum, P. & Palumbi, S. R. Testing small-scale ecological gradients and intraspecific differentiation for hundreds of kelp forest species using haplotypes from metabarcoding. Mol. Ecol. https://doi.org/10.1111/mec.15851 (2021).
Google Scholar
Yamahara, K. M. et al. In situ autonomous acquisition and preservation of marine environmental DNA using an autonomous underwater vehicle. Front. Mar. Sci. 6, 373 (2019).
Google Scholar
Breed, M. F. et al. Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity 115, 108–114 (2015).
Google Scholar
Hoban, S., Gaggiotti, O. & Bertorelle, G. Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. Methods Ecol. Evol. 4, 299–303 (2013).
Google Scholar
Peck, S. L. Simulation as experiment: a philosophical reassessment for biological modeling. Trends Ecol. Evol. 19, 530–534 (2004).
Google Scholar
Reid, B. N., Naro-Maciel, E., Hahn, A. T., FitzSimmons, N. N. & Gehara, M. Geography best explains global patterns of genetic diversity and postglacial co-expansion in marine turtles. Mol. Ecol. 28, 3358–3370 (2019).
Google Scholar
Kardos, M., Luikart, G. & Allendorf, F. W. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity 115, 63–72 (2015).
Google Scholar
Willing, E.-M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS One 7, e42649 (2012).
Google Scholar
Shafer, A. B. A. et al. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol. Evol. 8, 907–917 (2017).
Google Scholar
Cariou, M., Duret, L. & Charlat, S. How and how much does RAD-seq bias genetic diversity estimates? BMC Evol. Biol. 16, 240 (2016).
Google Scholar
De-Kayne, R. et al. Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets. Mol. Ecol. Resour. 21, 653–660 (2021).
Google Scholar
Leigh, D. M., Lischer, H. E. L., Grossen, C. & Keller, L. F. Batch effects in a multiyear sequencing study: false biological trends due to changes in read lengths. Mol. Ecol. Resour. 18, 778–788 (2018).
Google Scholar
Linck, E. & Battey, C. J. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol. Ecol. Resour. 19, 639–647 (2019).
Google Scholar
Benestan, L. M. et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol. Ecol. 25, 2967–2977 (2016).
Google Scholar
Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252–257 (2020).
Google Scholar
Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).
Google Scholar
Source: Ecology - nature.com