in

Opportunities and challenges of macrogenetic studies

  • 1.

    Brown, J. H. & Maurer, B. A. Macroecology: the division of food and space among species on continents. Science 243, 1145–1150 (1989).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Gaston, K. J., Robinson, D. & Chown, S. L. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).

    Article 

    Google Scholar 

  • 3.

    Chown, S. L. & Gaston, K. J. Macrophysiology–progress and prospects. Funct. Ecol. 30, 330–344 (2016).

    Article 

    Google Scholar 

  • 4.

    Avise, J. C. Phylogeography: the History and Formation of Species (Harvard University Press, 2000).

  • 5.

    Ebach, M. C. Origins of Biogeography. Vol. 13 (Springer, 2015).

  • 6.

    Brundin, L. On the real nature of transantarctic relationships. Evolution 19, 496–505 (1965).

    Google Scholar 

  • 7.

    Beheregaray, L. B. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol. Ecol. 17, 3754–3774 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Gaston, K. J. & Blackburn, T. M. A critique for macroecology. Oikos 84, 353–368 (1999).

    Article 

    Google Scholar 

  • 10.

    Lovegrove, B. G. The zoogeography of mammalian basal metabolic rate. Am. Nat. 156, 201–219 (2000).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Chown, S. L. & Gaston, K. J. Macrophysiology for a changing world. Proc. Biol. Sci. 275, 1469–1478 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Kerr, J. T., Kharouba, H. M. & Currie, D. J. The macroecological contribution to global change solutions. Science 316, 1581–1584 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: Emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017). This study coined the term ‘macrogenetics’ and illustrated, through three study examples, how shifting toward macrogenetics should generate new perspectives and theories concerning genetic diversity patterns.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Blanchet, S. et al. A river runs through it: the causes, consequences, and management of intraspecific diversity in river networks. Evol. Appl. 13, 1195–1213 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Frankham, R. Resolving conceptual issues in conservation genetics: the roles of laboratory species and meta-analyses. Hereditas 130, 195–201 (2004).

    Article 

    Google Scholar 

  • 17.

    Arnqvist, G. & Wooster, D. Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol. Evol. 10, 236–240 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. Biol. Sci. 285, 20172746 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Pelletier, T. A. & Carstens, B. C. Geographical range size and latitude predict population genetic structure in a global survey. Biol. Lett. 14, 20170566 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Miraldo, A. et al. An anthropocene map of genetic diversity. Science 353, 1532–1535 (2016). This paper is thought to be the first published study to massively repurpose public mtDNA sequences to explore global genetic patterns (100,791 sequences from >4,500 terrestrial mammal and amphibian species).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Yiming, L. et al. Latitudinal gradients in genetic diversity and natural selection at a highly adaptive gene in terrestrial mammals. Ecography 44, 206–218 (2021). This study found that adaptive IGV is higher at low latitudes and in smaller mammal species using repurposed MHC gene data from 93 mammal species.

    Article 

    Google Scholar 

  • 22.

    Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat. Commun. 11, 692 (2020). This study repurposed 58,565 public mtDNA sequences from 5,912 freshwater and marine fish to explore the effects of environmental drivers (temperature, species diversity) on intraspecific genetic diversity.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020). This study revealed a negative effect of past rapid climate change and a positive effect of interannual precipitation variability in shaping the genetic diversity of terrestrial mammals using 46,965 mtDNA sequences.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Barrow, L. N., da Fonseca, E. M., Thompson, C. E. P. & Carstens, B. C. Predicting amphibian intraspecific diversity with machine learning: Challenges and prospects for integrating traits, geography, and genetic data. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13303 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021). This study found weak support for latitudinal IGV gradients, taxonomic-specific effects of temperature stability and life-history traits, and higher IGV in animals compared to plants using microsatellite and amplified fragment length polymorphism data from 8,386 local populations from 727 animal and plant species.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Schmidt, C., Domaratzki, M., Kinnunen, R. P., Bowman, J. & Garroway, C. J. Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc. Biol. Sci. 287, 20192497 (2020). This study used archived microsatellite data from 85 studies (66 species) to explore the effects of urbanization in mammals and birds.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55–67 (2020). The authors of this article conducted spatial and temporal analysis of the effects of humans on animal genetic diversity worldwide, by repurposing 175,247 mtDNA sequences from >17,000 animal species.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Taberlet, P. et al. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15, 1439–1448 (2012). This paper reports a Class I macrogenetic study based on amplified fragment length polymorphism genetic data from 27 alpine plant species that tested whether genetic and species diversities co-vary.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Manel, S. et al. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol. 21, 3729–3738 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Gugerli, F. et al. Relationships among levels of biodiversity and the relevance of intraspecific diversity in conservation – a project synopsis. Perspect. Plant. Ecol. Evol. Syst. 10, 259–281 (2008).

    Article 

    Google Scholar 

  • 31.

    Schlaepfer, D. R., Braschler, B., Rusterholz, H.-P. & Baur, B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9, e02488 (2018).

    Article 

    Google Scholar 

  • 32.

    González, A. V., Gómez-Silva, V., Ramírez, M. J. & Fontúrbel, F. E. Meta-analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv. Biol. 34, 711–720 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Ratnasingham, S. & Hebert, P. D. N. Bold: the barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 35.

    Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article 

    Google Scholar 

  • 36.

    Theodoridis, S., Rahbek, C. & Nogues-Bravo, D. Exposure of mammal genetic diversity to mid-21st century global change. Ecography 44, 817–831 (2021).

    Article 

    Google Scholar 

  • 37.

    Rissler, L. J. Union of phylogeography and landscape genetics. Proc. Natl Acad. Sci. USA 113, 8079–8086 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Hubbell, S. P. The unified neutral theory of biodiversity and biogeography (Princeton University Press, 2001).

  • 39.

    Haldane, J. B. S. A mathematical theory of natural and artificial selection, Part V: selection and mutation. Math. Proc. Camb. Philos. Soc. 23, 838–844 (1927).

    Article 

    Google Scholar 

  • 40.

    Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Fisher, R. A. On the dominance ratio. Proc. R. Soc. Edinburgh 42, 321–341 (1922).

    Article 

    Google Scholar 

  • 42.

    Kimura, M. & Weiss, G. H. The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–576 (1964).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Kingman, J. F. C. The coalescent. Stoch. Process. Their Appl. 13, 235–248 (1982).

    Article 

    Google Scholar 

  • 44.

    Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Soulé, M. E. in Molecular Evolution (ed. Ayala, F. J.) 60–77 (Sinauer Associates, 1976).

  • 46.

    Brown, A. H. Isozymes, plant population genetic structure and genetic conservation. Tag. Theor. Appl. Genet. Theor. Angew. Genet. 52, 145–157 (1978).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. & Johnson, E. A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17, 240–248 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Carroll, E. L. et al. Genetic and genomic monitoring with minimally invasive sampling methods. Evol. Appl. 11, 1094–1119 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Gauthier, J. et al. Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland. Mol. Ecol. Resour. 20, 1191–1205 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Wandeler, P., Hoeck, P. E. A. & Keller, L. F. Back to the future: museum specimens in population genetics. Trends Ecol. Evol. 22, 634–642 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Strasser, B. J. The experimenter’s museum: GenBank, natural history, and the moral economies of biomedicine. Isis 102, 60–96 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Whitlock, M. C. Data archiving in ecology and evolution: best practices. Trends Ecol. Evol. 26, 61–65 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Deck, J. et al. The Genomic Observatories Metadatabase (GeOMe): A new repository for field and sampling event metadata associated with genetic samples. PLoS Biol. 15, e2002925 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    R Core Team. R: a language and environment for statistical computing, R Foundation for Statistical Computing http://www.r-project.org/index.html (2021).

  • 60.

    Manel, S. & Holderegger, R. Ten years of landscape genetics. Trends Ecol. Evol. 28, 614–621 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Prunier, J. G., Colyn, M., Legendre, X., Nimon, K. F. & Flamand, M. C. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Mol. Ecol. 24, 263–283 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Stanley, R. R. E. et al. A climate-associated multispecies cryptic cline in the northwest Atlantic. Sci. Adv. 4, eaaq0929 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Fenderson, L. E., Kovach, A. I. & Llamas, B. Spatiotemporal landscape genetics: investigating ecology and evolution through space and time. Mol. Ecol. 29, 218–246 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Daza, J. M., Castoe, T. A. & Parkinson, C. L. Using regional comparative phylogeographic data from snake lineages to infer historical processes in middle America. Ecography 33, 343–354 (2010).

    Google Scholar 

  • 65.

    Riddle, B. R. Comparative phylogeography clarifies the complexity and problems of continental distribution that drove A. R. Wallace to favor islands. Proc. Natl Acad. Sci. USA 113, 7970–7977 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Carstens, B. C., Morales, A. E., Field, K. & Pelletier, T. A. A global analysis of bats using automated comparative phylogeography uncovers a surprising impact of Pleistocene glaciation. J. Biogeogr. 45, 1795–1805 (2018).

    Article 

    Google Scholar 

  • 67.

    Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Smith, B. T. et al. The drivers of tropical speciation. Nature 515, 406–409 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Ballin, M., Barcaroli, G., Masselli, M. & Scarnó, M. Redesign Sample for Land Use/Cover Area Frame Survey (LUCAS) 2018 (EU Publications, 2018).

  • 70.

    Buchhorn, M. et al. Copernicus global land cover layers — Collection 2. Remote. Sens. 12, 1044 (2020).

    Article 

    Google Scholar 

  • 71.

    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090-184. Ecology 90, 2648–2648 (2009).

    Article 

    Google Scholar 

  • 72.

    Tedesco, P. A. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity: species diversity and genetic diversity. Ecol. Lett. 8, 767–781 (2005).

    Article 

    Google Scholar 

  • 74.

    Fourtune, L., Paz-Vinas, I., Loot, G., Prunier, J. G. & Blanchet, S. Lessons from the fish: a multi-species analysis reveals common processes underlying similar species-genetic diversity correlations. Freshw. Biol. 61, 1830–1845 (2016).

    Article 

    Google Scholar 

  • 75.

    Bertin, A. et al. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol. Ecol. 26, 431–443 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).

    Article 

    Google Scholar 

  • 77.

    Schmidt, C., Dray, S. & Garroway, C. J. Genetic and species-level biodiversity patterns are linked by demography and ecological opportunity. bioRxiv https://doi.org/10.1101/2020.06.03.132092 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Schmidt, C. & Garroway, C. J. The conservation utility of mitochondrial genetic diversity in macrogenetic research. Conserv. Genet. 22, 323–327 (2021).

    Article 

    Google Scholar 

  • 82.

    Gratton, P. et al. Which latitudinal gradients for genetic diversity? Trends Ecol. Evol. 32, 724–726 (2017). This response to Miraldo et al.20 identified a limitation of that article in that it did not account for the decay of genetic similarity with distance and represents the first critique of the downsides of the macrogenetic approach and the need for rigorous statistics.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Loveless, M. D. & Hamrick, J. L. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15, 65–95 (1984).

    Article 

    Google Scholar 

  • 84.

    Hu, Y. et al. Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Sci. Adv. 7, eabd5725 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 86.

    Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12, 1505–1512 (2019). This study estimated the magnitude of the loss of genetic variation over a century-scale using microsatellite data from 91 species.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Schmidt, C. & Garroway, C. J. The population genetics of urban and rural amphibians in north America. Mol. Ecol. https://doi.org/10.1111/mec.16005 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 18, 4541–4550 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Allio, R., Donega, S., Galtier, N. & Nabholz, B. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34, 2762–2772 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Almeida-Rocha, J. M., Soares, L. A. S. S., Andrade, E. R., Gaiotto, F. A. & Cazetta, E. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: a global meta-analysis. Mol. Ecol. 29, 4812–4822 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19, 4179–4191 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Paz-Vinas, I. et al. Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecol. Lett. 24, 1282–1284 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 96.

    Crandall, E. D. et al. The molecular biogeography of the Indo-Pacific: testing hypotheses with multispecies genetic patterns. Glob. Ecol. Biogeogr. 28, 943–960 (2019).

    Article 

    Google Scholar 

  • 97.

    Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27, 1332–1334 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Guillaume, F. & Rougemont, J. Nemo: an evolutionary and population genetics programming framework. Bioinformatics 22, 2556–2557 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Phillips, J. D., French, S. H., Hanner, R. H. & Gillis, D. J. HACSim: an R package to estimate intraspecific sample sizes for genetic diversity assessment using haplotype accumulation curves. PeerJ Comput. Sci. 6, e243 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Gratton, P. et al. A world of sequences: can we use georeferenced nucleotide databases for a robust automated phylogeography? J. Biogeogr. 44, 475–486 (2017).

    Article 

    Google Scholar 

  • 101.

    Kimura, M. On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 102.

    Baguette, M. & Van Dyck, H. Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc. Ecol. 22, 1117–1129 (2007).

    Article 

    Google Scholar 

  • 103.

    Crow, J. F. & Aoki, K. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc. Natl Acad. Sci. USA 81, 6073–6077 (1984).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Lanner, R. Why do trees live so long? Ageing Res. Rev. 1, 653–671 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Nabholz, B., Mauffrey, J.-F., Bazin, E., Galtier, N. & Glemin, S. Determination of mitochondrial genetic diversity in mammals. Genetics 178, 351–361 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 106.

    Lasne, C., Heerwaarden, B., Sgrò, C. M. & Connallon, T. Quantifying the relative contributions of the X chromosome, autosomes, and mitochondrial genome to local adaptation. Evolution 73, 262–277 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Phillips, J. D., Gillis, D. J. & Hanner, R. H. Incomplete estimates of genetic diversity within species: implications for DNA barcoding. Ecol. Evol. 9, 2996–3010 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Humphries, P. & Winemiller, K. O. Historical impacts on river fauna, shifting baselines, and challenges for restoration. BioScience 59, 673–684 (2009).

    Article 

    Google Scholar 

  • 109.

    Stoffel, M. A. et al. Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history. Nat. Commun. 9, 4836 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 110.

    Collier-Robinson, L., Rayne, A., Rupene, M., Thoms, C. & Steeves, T. Embedding indigenous principles in genomic research of culturally significant species: a conservation genomics case study. N. Z. J. Ecol. 43, 3389 (2019).

    Google Scholar 

  • 111.

    Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 112.

    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 113.

    Pope, L. C., Liggins, L., Keyse, J., Carvalho, S. B. & Riginos, C. Not the time or the place: the missing spatio-temporal link in publicly available genetic data. Mol. Ecol. 24, 3802–3809 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 114.

    Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 115.

    Sibbett, B., Rieseberg, L. H. & Narum, S. The genomic observatories metadatabase. Mol. Ecol. Resour. 20, 1453–1454 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2020).

    Article 

    Google Scholar 

  • 117.

    Cornwell, W. K., Pearse, W. D., Dalrymple, R. L. & Zanne, A. E. What we (don’t) know about global plant diversity. Ecography 42, 1819–1831 (2019).

    Article 

    Google Scholar 

  • 118.

    Li, X. et al. Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157–166 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 119.

    Vasquez-Gross, H. A. et al. CartograTree: connecting tree genomes, phenotypes and environment. Mol. Ecol. Resour. 13, 528–537 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 120.

    Lawrence, E. R. et al. Geo-referenced population-specific microsatellite data across American continents, the MacroPopGen Database. Sci. Data 6, 14 (2019). This paper reports a compilation of georeferenced vertebrate microsatellite data, summary statistics and meta-data across the Americas for 897 species and 9,090 genetically distinct populations.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 121.

    Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 122.

    Barber, P. H. et al. Advancing biodiversity research in developing countries: the need for changing paradigms. Bull. Mar. Sci. 90, 187–210 (2014).

    Article 

    Google Scholar 

  • 123.

    Bork, P. et al. Tara Oceans. Tara Oceans studies plankton at planetary scale. Introduction. Science 348, 873–873 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 124.

    Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 125.

    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).

    Article 

    Google Scholar 

  • 126.

    Holmes, M. W. et al. Natural history collections as windows on evolutionary processes. Mol. Ecol. 25, 864–881 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 127.

    Boukhdoud, L. et al. First DNA sequence reference library for mammals and plants of the Eastern Mediterranean Region. Genome 64, 39–49 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 128.

    Colella, J. P. et al. The Open-Specimen movement. BioScience 71, 405–414 (2020).

    Article 

    Google Scholar 

  • 129.

    Wright, S. Correlation and causation. J. Agric. Res. 20, 557–585 (1921).

    Google Scholar 

  • 130.

    Fourtune, L. et al. Inferring causalities in landscape genetics: an extension of Wright’s causal modeling to distance matrices. Am. Nat. 191, 491–508 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 131.

    Paz-Vinas, I., Loot, G., Stevens, V. M. & Blanchet, S. Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Mol. Ecol. 24, 4586–4604 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 132.

    Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 133.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • 134.

    Proença, V. et al. Global biodiversity monitoring: From data sources to Essential Biodiversity Variables. Biol. Conserv. 213, 256–263 (2017).

    Article 

    Google Scholar 

  • 135.

    Ve˅trovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 136.

    Hanson, J. O. et al. Conservation planning for adaptive and neutral evolutionary processes. J. Appl. Ecol. 57, 2159–2169 (2020).

    Article 

    Google Scholar 

  • 137.

    Xuereb, A., D’Aloia, C. C., Andrello, M., Bernatchez, L. & Fortin, M. Incorporating putatively neutral and adaptive genomic data into marine conservation planning. Conserv. Biol. 35, 909–920 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 138.

    Carvalho, S. B., Torres, J., Tarroso, P. & Velo-Antón, G. Genes on the edge: a framework to detect genetic diversity imperiled by climate change. Glob. Change Biol. 25, 4034–4047 (2019).

    Article 

    Google Scholar 

  • 139.

    Adams, W. M. & Sandbrook, C. Conservation, evidence and policy. Oryx 47, 329–335 (2013).

    Article 

    Google Scholar 

  • 140.

    Laikre, L. et al. Post-2020 goals overlook genetic diversity. Science 367, 1083.2–1085 (2020).

    Article 
    CAS 

    Google Scholar 

  • 141.

    Thomson, A. I. et al. Charting a course for genetic diversity in the UN Decade of Ocean Science. Evol. Appl. 14, 1497–1518 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 142.

    Hoban, S. M. et al. Bringing genetic diversity to the forefront of conservation policy and management. Conserv. Genet. Resour. 5, 593–598 (2013).

    Article 

    Google Scholar 

  • 143.

    Carroll, S. R. et al. The CARE principles for indigenous data governance. Data Sci. J. 19, 43 (2020).

    Article 

    Google Scholar 

  • 144.

    Fargeot, L. et al. Patterns of epigenetic diversity in two sympatric fish species: genetic vs. environmental determinants. Genes 12, 107 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 145.

    Gaggiotti, O. E. et al. Diversity from genes to ecosystems: a unifying framework to study variation across biological metrics and scales. Evol. Appl. 11, 1176–1193 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 146.

    Waples, R. S., Antao, T. & Luikart, G. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197, 769–780 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 147.

    Waples, R. S. & Yokota, M. Temporal estimates of effective population size in species with overlapping generations. Genetics 175, 219–233 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 148.

    Antao, T., Pérez-Figueroa, A. & Luikart, G. Early detection of population declines: high power of genetic monitoring using effective population size estimators. Evol. Appl. 4, 144–154 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 149.

    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 150.

    Phillips, J. D., Gwiazdowski, R. A., Ashlock, D. & Hanner, R. An exploration of sufficient sampling effort to describe intraspecific DNA barcode haplotype diversity: examples from the ray-finned fishes (Chordata: Actinopterygii). DNA Barcodes 3, 66–73 (2015).

    Article 

    Google Scholar 

  • 151.

    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 152.

    Jordan, R., Breed, M. F., Prober, S. M., Miller, A. D. & Hoffmann, A. A. How well do revegetation plantings capture genetic diversity? Biol. Lett. 15, 20190460 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 153.

    Holderegger, R. & Di Giulio, M. The genetic effects of roads: a review of empirical evidence. Basic. Appl. Ecol. 11, 522–531 (2010).

    Article 

    Google Scholar 

  • 154.

    Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One 7, e45170 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 155.

    Jackson, T. M., Roegner, G. C. & O’Malley, K. G. Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol. Ecol. 27, 352–368 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 156.

    Hoban, S. et al. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol. Appl. 7, 984–998 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 157.

    Anderson, C. N. K., Ramakrishnan, U., Chan, Y. L. & Hadly, E. A. Serial SimCoal: a population genetics model for data from multiple populations and points in time. Bioinformatics 21, 1733–1734 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 158.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article 

    Google Scholar 

  • 159.

    Elbrecht, V., Vamos, E. E., Steinke, D. & Leese, F. Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ 6, e4644 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 160.

    Shum, P. & Palumbi, S. R. Testing small-scale ecological gradients and intraspecific differentiation for hundreds of kelp forest species using haplotypes from metabarcoding. Mol. Ecol. https://doi.org/10.1111/mec.15851 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 161.

    Yamahara, K. M. et al. In situ autonomous acquisition and preservation of marine environmental DNA using an autonomous underwater vehicle. Front. Mar. Sci. 6, 373 (2019).

    Article 

    Google Scholar 

  • 162.

    Breed, M. F. et al. Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity 115, 108–114 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 163.

    Hoban, S., Gaggiotti, O. & Bertorelle, G. Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. Methods Ecol. Evol. 4, 299–303 (2013).

    Article 

    Google Scholar 

  • 164.

    Peck, S. L. Simulation as experiment: a philosophical reassessment for biological modeling. Trends Ecol. Evol. 19, 530–534 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 165.

    Reid, B. N., Naro-Maciel, E., Hahn, A. T., FitzSimmons, N. N. & Gehara, M. Geography best explains global patterns of genetic diversity and postglacial co-expansion in marine turtles. Mol. Ecol. 28, 3358–3370 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 166.

    Kardos, M., Luikart, G. & Allendorf, F. W. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity 115, 63–72 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 167.

    Willing, E.-M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS One 7, e42649 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 168.

    Shafer, A. B. A. et al. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol. Evol. 8, 907–917 (2017).

    Article 

    Google Scholar 

  • 169.

    Cariou, M., Duret, L. & Charlat, S. How and how much does RAD-seq bias genetic diversity estimates? BMC Evol. Biol. 16, 240 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 170.

    De-Kayne, R. et al. Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets. Mol. Ecol. Resour. 21, 653–660 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 171.

    Leigh, D. M., Lischer, H. E. L., Grossen, C. & Keller, L. F. Batch effects in a multiyear sequencing study: false biological trends due to changes in read lengths. Mol. Ecol. Resour. 18, 778–788 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 172.

    Linck, E. & Battey, C. J. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol. Ecol. Resour. 19, 639–647 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 173.

    Benestan, L. M. et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol. Ecol. 25, 2967–2977 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 174.

    Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252–257 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 175.

    Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Smarter regulation of global shipping emissions could improve air quality and health outcomes

    Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism