in

Optimal fishing effort benefits fisheries and conservation

  • 1.

    Hall-Spencer, J. M. & Moore, P. G. Scallop dredging has profound, long-term impacts on maerl habitats. ICES J. Mar. Sci. 57, 1407–1415 (2000).

    Article  Google Scholar 

  • 2.

    Eigaard, O. R. et al. The footprint of bottom trawling in European waters: Distribution, intensity, and seabed integrity. ICES J. Mar. Sci. 74, 847–865 (2017).

    Article  Google Scholar 

  • 3.

    Auster, P. J. et al. The impacts of mobile fishing gear on seafloor habitats in the gulf of maine (Northwest Atlantic): Implications for conservation of fish populations. Rev. Fish. Sci. 4, 185–202 (1996).

    ADS  Article  Google Scholar 

  • 4.

    Gell, F. R. & Roberts, C. M. Benefits beyond boundaries: The fishery effects of marine reserves. Trends Ecol. Evol. 18, 448–455 (2003).

    Article  Google Scholar 

  • 5.

    Roberts, C. M. et al. Marine reserves canmitigate and promote adaptation to climate change. Proc. Natl. Acad. Sci. USA 114, 6167–6175 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Sciberras, M., Jenkins, S. R., Kaiser, M. J., Hawkins, S. J. & Pullin, A. S. Evaluating the biological effectiveness of fully and partially protected marine areas. Environ. Evid. 2, 1–31 (2013).

    Article  Google Scholar 

  • 7.

    Afonso, P., Schmiing, M., Diogo, H. & Serra, R. With various conservation objectives and targets. ICES J. Mar. Sci. 72, 851–862 (2015).

    Article  Google Scholar 

  • 8.

    Schmiing, M., Diogo, H., Santos, R. S. & Afonso, P. Marine conservation of multispecies and multi-use areas with various conservation objectives and targets. ICES J. Mar. Sci. 72, 851–862 (2015).

    Article  Google Scholar 

  • 9.

    Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis. Sci. Rep. 7, 1–12 (2017).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Zupan, M. et al. Marine partially protected areas: Drivers of ecological effectiveness. Front. Ecol. Environ. 16, 20 (2018).

    ADS  Article  Google Scholar 

  • 11.

    Halpern, B. S. The impact of marine reserves: Do reserves work and does reserve size matter. Ecol. Appl. 13, S117–S137 (2003).

    Article  Google Scholar 

  • 12.

    Pikitch, E. K. et al. Ecosystem-based fishery management. Science (80–) 305, 20 (2004).

    Article  Google Scholar 

  • 13.

    Claudet, J. et al. Marine reserves: Size and age do matter. Ecol. Lett. 11, 481–489 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Lester, S. E. et al. Biological effects within no-take marine reserves: A global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    ADS  Article  Google Scholar 

  • 15.

    Fraschetti, S., Guarnieri, G., Bevilacqua, S., Terlizzi, A. & Boero, F. Protection enhances community and habitat stability: Evidence from a Mediterranean marine protected area. PLoS One 8, 20 (2013).

    Google Scholar 

  • 16.

    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 1–6 (2013).

    Article  Google Scholar 

  • 17.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl. Acad. Sci. USA 114, 8301–8306 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Lombard, A. T. et al. Key challenges in advancing an ecosystem-based approach to marine spatial planning under economic growth imperatives. Front. Mar. Sci. 6, 20 (2019).

    Article  Google Scholar 

  • 20.

    Trochta, J. T. et al. Ecosystem-based fisheries management: Perception on definitions, implementations, and aspirations. PLoS One 13, 1–9 (2018).

    Google Scholar 

  • 21.

    EEA. Marine Protected Areas in Europe’s Seas. An Overview and Perspectives for the Future. (2015). https://doi.org/10.2800/99473.

  • 22.

    Mangi, S. C., Rodwell, L. D. & Hattam, C. Assessing the impacts of establishing MPAs on fishermen and fish merchants: The case of Lyme Bay, UK. Ambio 40, 457–468 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Luisetti, T. et al. Coastal and marine ecosystem services valuation for policy and management: Managed realignment case studies in England. Ocean Coast. Manag. 54, 212–224 (2011).

    Article  Google Scholar 

  • 24.

    Molfese, C., Beare, D. & Hall-Spencer, J. M. Overfishing and the replacement of demersal finfish by shellfish: An example from the english channel. PLoS One 9, 20 (2014).

    Google Scholar 

  • 25.

    Eno, N. C. et al. Effects of crustacean traps on benthic fauna. ICES J. Mar. Sci. 58, 11–20 (2001).

    Article  Google Scholar 

  • 26.

    Coleman, R. A., Hoskin, M. G., von Carlshausen, E. & Davis, C. M. Using a no-take zone to assess the impacts of fishing: Sessile epifauna appear insensitive to environmental disturbances from commercial potting. J. Exp. Mar. Bio. Ecol. 440, 100–107 (2013).

    Article  Google Scholar 

  • 27.

    Lewis, C. F., Slade, S. L., Maxwell, K. E. & Matthews, T. R. Lobster trap impact on coral reefs: Effects of wind-driven trap movement. New Zeal. J. Mar. Freshw. Res. 43, 271–282 (2009).

    Article  Google Scholar 

  • 28.

    Micheli, F., De Leo, G., Butner, C., Martone, R. G. & Shester, G. A risk-based framework for assessing the cumulative impact of multiple fisheries. Biol. Conserv. 176, 224–235 (2014).

    Article  Google Scholar 

  • 29.

    Stephenson, F., Mill, A. C., Scott, C. L., Polunin, N. V. C. & Fitzsimmons, C. Experimental potting impacts on common UK reef habitats in areas of high and low fishing pressure. ICES J. Mar. Sci. 74, 1648–1659 (2017).

    Article  Google Scholar 

  • 30.

    Sinclair, M. & Valdimarsson, G. Responsible fisheries in the marine ecosystem. Fish. Res. 20, 426 (2014).

    Google Scholar 

  • 31.

    Sheehan, E. V., Stevens, T. F., Gall, S. C., Cousens, S. L. & Attrill, M. J. Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing. PLoS One 8, 1–12 (2013).

    Google Scholar 

  • 32.

    Sheehan, E. V. et al. Drawing lines at the sand: Evidence for functional vs visual reef boundaries in temperate Marine Protected Areas. Mar. Pollut. Bull. 76, 194–202 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Jackson, E. L., Langmead, O., Barnes, M., Tyler-Walters, H. & Hiscock, K. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-economic Changes. (2008).

  • 34.

    Stevens, T. F., Sheehan, E. V., Gall, S. C., Fowell, S. C. & Attrill, M. J. Monitoring benthic biodiversity restoration in Lyme Bay marine protected area: Design, sampling and analysis. Mar. Policy 45, 310–317 (2014).

    Article  Google Scholar 

  • 35.

    Picton, B. E. & Morrow, C. C. Encyclopedia of Marine Life of Britain and Ireland (The Ulster Museum, Belfast, 2016).

    Google Scholar 

  • 36.

    Langmead. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-Economic Changes. 44 (2012).

  • 37.

    Bradshaw, C., Collins, P. & Brand, A. R. To what extent does upright sessile epifauna affect benthic biodiversity and community composition?. Mar. Biol. 143, 783–791 (2003).

    Article  Google Scholar 

  • 38.

    Cocito, S., Ferdeghini, F. & Sgorbini, S. Pentapora fascialis (Pallas) [Cheilostomata: Ascophora] colonization of one sublittoral rocky site after sea-storm in the northwestern mediterranean. Hydrobiologia 375–376, 59–66 (1998).

    Article  Google Scholar 

  • 39.

    Eggleston, D., Lipcius, R., Miller, D. & Coba-Cetina, L. Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus. Mar. Ecol. Prog. Ser. 62, 79–88 (1990).

    ADS  Article  Google Scholar 

  • 40.

    Pirtle, J. L., Eckert, G. L. & Stoner, A. W. Habitat structure influences the survival and predator-prey interactions of early juvenile red king crab Paralithodes camtschaticus. Mar. Ecol. Prog. Ser. 465, 169–184 (2012).

    ADS  Article  Google Scholar 

  • 41.

    Gall, S. C. et al. The impact of potting for crustaceans on temperate rocky reef habitats: Implications for management. Mar. Environ. Res. 162, 105134 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Lambert, G. I., Jennings, S., Kaiser, M. J., Hinz, H. & Hiddink, J. G. Quantification and prediction of the impact of fishing on epifaunal communities. Mar. Ecol. Prog. Ser. 430, 71–86 (2011).

    ADS  Article  Google Scholar 

  • 43.

    Soldant, J., Mullier, T., Elliott, T. & Sheehan, E. V. Managing marine protected areas in Europe: Moving from ‘feature-based’ to ’whole-site; management of sites. In Marine Protected Areas: Science, Policy and Management Vol 828 (eds Humphreys, J. & Clark, R. W. E.) (Elsevier, New York, 2020).

    Google Scholar 

  • 44.

    Staples, D. & Funge-Smith, S. Ecosystem Approach to Fisheries and Aquaculture: Implementing the FAO Code of Conduct for Responsible Fisheries (RAP Publication, Bangkok, 2009).

    Google Scholar 

  • 45.

    Garcia, S. M., Rice, J. & Charles, A. Bridging fisheries management and biodiversity conservation norms: Potential and challenges ofbalancing harvest in ecosystem- based frameworks. Nature 6, 20 (2015).

    Google Scholar 

  • 46.

    DEFRA. Marine Protected Areas Network Report 2012–2018. (2018).

  • 47.

    Burke, C. Ireland’s need for inshore local management. Fish. News 7, 20 (2015).

    Google Scholar 

  • 48.

    Rees, S. E. et al. An evaluation Framework to Determine the Impact of the Lyme Bay Fisheries and Conservation Reserve and the Activities of the Lyme Bay Consultative Committee on Ecosystem Services and Human Wellbeing Final Report To the October 2016. (2016).

  • 49.

    Cork, M., McNulty, S. & Gaches, P. Site Selection Report for Inshore Marine SACs Project. Poole Bay to Lyme Bay. Report No. 9S0282/SSR/PooleLymeBay/01 (2008).

  • 50.

    Attrill, M. J. et al. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-economic chaNges. (2012).

  • 51.

    Ross, R. South Devon Reef Video Baseline Surveys for the Prawle Point to Plymouth Sound & Eddystone cSAC and Surrounding Areas As commissioned by Natural England South Devon Reef Video Baseline Surveys for the Prawle Point to Plymouth Sound & Eddystone cSAC and Su. (2016)https://doi.org/10.13140/2.1.2313.1205.

  • 52.

    Vanstaen, K. & Eggleton, J. Mapping Annex 1 Reef Habitat Present in Specific areas Within the Lyme Bay and Torbay cSAC. (2011).

  • 53.

    Sheehan, E. V., Stevens, T. F., Attrill, M. J., Ropert-Coudert, Y. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments. PLoS ONE 5(12), e14461 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Sheehan, E. V. et al. An experimental comparison of three towed underwater video systems using species metrics, benthic impact and performance. Methods Ecol. Evol. 7(7), 843–852 (2016).

    Article  Google Scholar 

  • 55.

    Bicknell, A. W. J., Sheehan, E. V., Godley, B. J., Doherty, P. D. & Witt, M. J. Assessing the impact of introduced infrastructure at sea with cameras: A case study for spatial scale, time and statistical power. Mar. Environ. Res. 147, 126–137 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the porcupine seabight, North-East Atlantic: Observations by baited camera, trap and trawl. Nat. Hist. https://doi.org/10.1017/s0025315400047615 (1994).

    Article  Google Scholar 

  • 57.

    Watson, D. L., Harvey, E. S., Anderson, M. J. & Kendrick, G. A. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar. Biol. 148, 415–425 (2005).

    Article  Google Scholar 

  • 58.

    Cappo, M., Harvey, E. & Shortis, M. Counting and measuring fish with baited video techniques—an overview. Aust. Soc. Fish Biol. 1100, 1–9 (2006).

    Google Scholar 

  • 59.

    Elliott, S. A. M., Turrell, W. R., Heath, M. R. & Bailey, D. M. Juvenile gadoid habitat and ontogenetic shift observations using stereo-video baited cameras. Mar. Ecol. Prog. Ser. 568, 123–135 (2017).

    ADS  Article  Google Scholar 

  • 60.

    McLean, D. L., Harvey, E. S., Fairclough, D. V. & Newman, S. J. Large decline in the abundance of a targeted tropical lethrinid in areas open and closed to fishing. Mar. Ecol. Prog. Ser. 418, 189–199 (2010).

    ADS  Article  Google Scholar 

  • 61.

    Harvey, E. S. et al. Comparison of the relative efficiencies of stereo-BRUVs and traps for sampling tropical continental shelf demersal fishes. Fish. Res. 125–126, 108–120 (2012).

    Article  Google Scholar 

  • 62.

    Maragos, J. E. Marine and Coastal Biodiversity in the Tropical Island Pacific Region. (East-West Center, 1995).

  • 63.

    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E Ltd., Plymouth Marine Laboratory, Plymouth, 2001).

    Google Scholar 

  • 64.

    Taylor, P., Anderson, M. & Ter Braak, C. J. Stat. Comput. Permut. Tests Multi-Factor. Anal. Variance https://doi.org/10.1080/00949650215733 (2006).

    Article  Google Scholar 

  • 65.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance MARTI. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Predator-induced defence in a dinoflagellate generates benefits without direct costs

    Movement behavior of a solitary large carnivore within a hotspot of human-wildlife conflicts in India