Jane, S. F. et al. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 15, 216–227 (2015).
Google Scholar
Thomsen, P. F. & Willerslev, E. Environmental DNA: An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
Google Scholar
Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).
Google Scholar
Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).
Google Scholar
Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).
Google Scholar
Willoughby, J. R., Wijayawardena, B. K., Sundaram, M., Swihart, R. K. & DeWoody, J. A. The importance of including imperfect detection models in eDNA experimental design. Mol. Ecol. Resour. 16, 837–844 (2016).
Google Scholar
Burian, A. et al. Improving the reliability of eDNA data interpretation. Mol. Ecol. Resour. March, 1–12 (2021).
Klymus, K. E., Richter, C. A., Chapman, D. C. & Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol. Conserv. 183, 77–84 (2015).
Google Scholar
Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 46294 (2017).
Google Scholar
Mächler, E., Deiner, K., Spahn, F. & Altermatt, F. Fishing in the water: Effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environ. Sci. Technol. 50, 305–312 (2016).
Google Scholar
Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: Advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2016).
Google Scholar
Djurhuus, A. et al. Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Front. Mar. Sci. 4, 314 (2017).
Google Scholar
Lugg, W. H., Griffiths, J., van Rooyen, A. R., Weeks, A. R. & Tingley, R. Optimal survey designs for environmental DNA sampling. Methods Ecol. Evol. 9, 1049–1059 (2017).
Mauvisseau, Q. et al. Influence of accuracy, repeatability and detection probability in the reliability of species-specific eDNA based approaches. Sci. Rep. 9, 1–11 (2019).
Willoughby, J. R., Wijayawardena, B. K., Sundaram, M., Swihart, R. K. & DeWoody, J. A. The importance of including imperfect detection models in eDNA experimental design. Mol. Ecol. Resour. 16 , 837–844 (2016).
Griffin, J. E., Matechou, E., Buxton, A. S., Bormpoudakis, D. & Griffiths, R. A. Modelling environmental DNA data; Bayesian variable selection accounting for false positive and false negative errors. J. R. Stat. Soc. Ser. C Appl. Stat. 69, 377–392 (2020).
Google Scholar
Lahoz-Monfort, J. J., Guillera-Arroita, G. & Tingley, R. Statistical approaches to account for false-positive errors in environmental DNA samples. Mol. Ecol. Resour. 16, 673–685 (2016).
Google Scholar
Stratton, C., Sepulveda, A. J. & Hoegh, A. msocc: Fit and analyse computationally efficient multi-scale occupancy models in r. Methods Ecol. Evol. 11, 1113–1120 (2020).
Google Scholar
Tingley, R., Coleman, R., Gecse, N., van Rooyen, A. & Weeks, A. Accounting for false positive detections in occupancy studies based on environmental DNA: A case study of a threatened freshwater fish (Galaxiella pusilla). Environ. DNA 00, 1–10 (2020).
Schmidt, B. R., Kéry, M., Ursenbacher, S., Hyman, O. J. & Collins, J. P. Site occupancy models in the analysis of environmental DNA presence/absence surveys: A case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4, 646–653 (2013).
Google Scholar
Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945 (2017).
Google Scholar
Biggs, J. et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19–28 (2015).
Google Scholar
Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 3085 (2019).
Google Scholar
Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).
Google Scholar
Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).
Google Scholar
Nakagawa, H. et al. Comparing local- and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshw. Biol. 63, 569–580 (2018).
Google Scholar
Royle, J. A. & Link, W. A. Generalized site occupancy models allowing for false positives and false negative errors. Ecology 87, 835–841 (2006).
Google Scholar
Mackenzie, D. I. & Kendall, W. L. How should detection probability be incorporated into estimates of relative abundance?. Ecology 83, 2387–2393 (2002).
Google Scholar
MacKenzie, D. D., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).
Google Scholar
Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D. & Possingham, H. P. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Appl. 13, 1790–1801 (2003).
Google Scholar
Dorazio, R. M. & Erickson, R. A. EDNAOCCUPUANCY: An R package for multi-scale occupancy modeling of environmental DNA data. Mol. Ecol. Resour. 18, 368–380 (2018).
Google Scholar
Guillera-Arroita, G., Lahoz-Monfort, J. J., van Rooyen, A. R., Weeks, A. R. & Tingley, R. Dealing with false positive and false negative errors about species occurrence at multiple levels. Methods Ecol. Evol. 8, 1081–1091 (2017).
Google Scholar
Cole, D. J. Parameter Redundancy and Identi Ability (CRC Press, Boca Raton, 2020).
Google Scholar
Diana, A., Matechou, E., Griffin, J. E., Buxtron, A. S. & Griffiths, R. A. An Rshiny app for modelling environmental DNA data: Accounting for false positve and false negative observation error. bioRxiv https://doi.org/10.1101/2020.12.09.417600 (2020).
Google Scholar
Biggs, J. et al. Analytical and methodological development for improved surveillance of the great crested newt. Defra Project WC1067. (2014).
Sewell, D., Beebee, T. J. C. & Griffiths, R. A. Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biol. Conserv. 143, 2102–2110 (2010).
Google Scholar
Buxton, A. S., Tracey, H. & Downs, N. C. How reliable is the habitat suitability index as a predictor of great crested newt presence or absence?. Herpertological J. 31, 51–57 (2021).
R-Core Team. R: language and environment for statistical computing. (2020).
Oldham, R. S., Keeble, J., Swan, M. J. S. & Jeffcote, M. Evaluating the suitability of habitat for the great crested newt (Triturus cristatus). Herpetol. J. 10, 143–155 (2000).
Source: Ecology - nature.com