in

Optimising sampling and analysis protocols in environmental DNA studies

  • 1.

    Jane, S. F. et al. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 15, 216–227 (2015).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Thomsen, P. F. & Willerslev, E. Environmental DNA: An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article 

    Google Scholar 

  • 3.

    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).

    Article 

    Google Scholar 

  • 5.

    Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Willoughby, J. R., Wijayawardena, B. K., Sundaram, M., Swihart, R. K. & DeWoody, J. A. The importance of including imperfect detection models in eDNA experimental design. Mol. Ecol. Resour. 16, 837–844 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Burian, A. et al. Improving the reliability of eDNA data interpretation. Mol. Ecol. Resour. March, 1–12 (2021).

    Google Scholar 

  • 8.

    Klymus, K. E., Richter, C. A., Chapman, D. C. & Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol. Conserv. 183, 77–84 (2015).

    Article 

    Google Scholar 

  • 9.

    Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 46294 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Mächler, E., Deiner, K., Spahn, F. & Altermatt, F. Fishing in the water: Effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environ. Sci. Technol. 50, 305–312 (2016).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: Advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2016).

    Article 

    Google Scholar 

  • 12.

    Djurhuus, A. et al. Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Front. Mar. Sci. 4, 314 (2017).

    Article 

    Google Scholar 

  • 13.

    Lugg, W. H., Griffiths, J., van Rooyen, A. R., Weeks, A. R. & Tingley, R. Optimal survey designs for environmental DNA sampling. Methods Ecol. Evol. 9, 1049–1059 (2017).

  • 14.

    Mauvisseau, Q. et al. Influence of accuracy, repeatability and detection probability in the reliability of species-specific eDNA based approaches. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  • 15.

    Willoughby, J. R., Wijayawardena, B. K., Sundaram, M., Swihart, R. K. & DeWoody, J. A. The importance of including imperfect detection models in eDNA experimental design. Mol. Ecol. Resour. 16 , 837–844 (2016).

  • 16.

    Griffin, J. E., Matechou, E., Buxton, A. S., Bormpoudakis, D. & Griffiths, R. A. Modelling environmental DNA data; Bayesian variable selection accounting for false positive and false negative errors. J. R. Stat. Soc. Ser. C Appl. Stat. 69, 377–392 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • 17.

    Lahoz-Monfort, J. J., Guillera-Arroita, G. & Tingley, R. Statistical approaches to account for false-positive errors in environmental DNA samples. Mol. Ecol. Resour. 16, 673–685 (2016).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Stratton, C., Sepulveda, A. J. & Hoegh, A. msocc: Fit and analyse computationally efficient multi-scale occupancy models in r. Methods Ecol. Evol. 11, 1113–1120 (2020).

    Article 

    Google Scholar 

  • 19.

    Tingley, R., Coleman, R., Gecse, N., van Rooyen, A. & Weeks, A. Accounting for false positive detections in occupancy studies based on environmental DNA: A case study of a threatened freshwater fish (Galaxiella pusilla). Environ. DNA 00, 1–10 (2020).

    Google Scholar 

  • 20.

    Schmidt, B. R., Kéry, M., Ursenbacher, S., Hyman, O. J. & Collins, J. P. Site occupancy models in the analysis of environmental DNA presence/absence surveys: A case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4, 646–653 (2013).

    Article 

    Google Scholar 

  • 21.

    Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945 (2017).

    Article 

    Google Scholar 

  • 22.

    Biggs, J. et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19–28 (2015).

    Article 

    Google Scholar 

  • 23.

    Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 3085 (2019).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).

    Article 

    Google Scholar 

  • 25.

    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Nakagawa, H. et al. Comparing local- and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshw. Biol. 63, 569–580 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Royle, J. A. & Link, W. A. Generalized site occupancy models allowing for false positives and false negative errors. Ecology 87, 835–841 (2006).

    Article 

    Google Scholar 

  • 28.

    Mackenzie, D. I. & Kendall, W. L. How should detection probability be incorporated into estimates of relative abundance?. Ecology 83, 2387–2393 (2002).

    Article 

    Google Scholar 

  • 29.

    MacKenzie, D. D., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).

    Article 

    Google Scholar 

  • 30.

    Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D. & Possingham, H. P. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Appl. 13, 1790–1801 (2003).

    Article 

    Google Scholar 

  • 31.

    Dorazio, R. M. & Erickson, R. A. EDNAOCCUPUANCY: An R package for multi-scale occupancy modeling of environmental DNA data. Mol. Ecol. Resour. 18, 368–380 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Guillera-Arroita, G., Lahoz-Monfort, J. J., van Rooyen, A. R., Weeks, A. R. & Tingley, R. Dealing with false positive and false negative errors about species occurrence at multiple levels. Methods Ecol. Evol. 8, 1081–1091 (2017).

    Article 

    Google Scholar 

  • 33.

    Cole, D. J. Parameter Redundancy and Identi Ability (CRC Press, Boca Raton, 2020).

    Book 

    Google Scholar 

  • 34.

    Diana, A., Matechou, E., Griffin, J. E., Buxtron, A. S. & Griffiths, R. A. An Rshiny app for modelling environmental DNA data: Accounting for false positve and false negative observation error. bioRxiv https://doi.org/10.1101/2020.12.09.417600 (2020).

    Article 

    Google Scholar 

  • 35.

    Biggs, J. et al. Analytical and methodological development for improved surveillance of the great crested newt. Defra Project WC1067. (2014).

  • 36.

    Sewell, D., Beebee, T. J. C. & Griffiths, R. A. Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biol. Conserv. 143, 2102–2110 (2010).

    Article 

    Google Scholar 

  • 37.

    Buxton, A. S., Tracey, H. & Downs, N. C. How reliable is the habitat suitability index as a predictor of great crested newt presence or absence?. Herpertological J. 31, 51–57 (2021).

    Google Scholar 

  • 38.

    R-Core Team. R: language and environment for statistical computing. (2020).

  • 39.

    Oldham, R. S., Keeble, J., Swan, M. J. S. & Jeffcote, M. Evaluating the suitability of habitat for the great crested newt (Triturus cristatus). Herpetol. J. 10, 143–155 (2000).

    Google Scholar 


  • Source: Ecology - nature.com

    Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil

    From gas to solar, bringing meaningful change to Nigeria’s energy systems