in

Optimization of the flow conditions in the spawning ground of the Chinese sturgeon (Acipenser sinensis) through Gezhouba Dam generating units

Flow velocity threshold

There were 92 Chinese sturgeon signals from 2016 to 2019, which were identified with the DIDSON dual-frequency video sonar system. The distribution map of Chinese sturgeon signals was shown in Fig. 1. The number of monitored signals in 2016 was significantly higher than in 2017–2019. The latest wild reproduction of the Chinese sturgeon occurred in 2016. Overall, most Chinese sturgeon signals were distributed within 500 m downstream from Gezhouba Dam, and there were more in the right side(facing downstream) than in the left side. The flow field of each sturgeon signal was simulated by the model, and the velocity of each signal location was obtained. According to the statistical analysis of the flow velocity values, the frequency of the sturgeon signal at different flow velocity values was shown in Fig. 2. The results show that most signals were concentrated in areas with flow velocities of 0.6–1.5 m/s, which accounted for 88.1% of the signals; areas with flow velocities below 0.6 m/s accounted for 4.3% of the signals, and areas with flow velocities above 1.5 m/s accounted for 7.6%. Therefore, 0.6–1.5 m/s was selected as the preferred flow velocity range of the Chinese sturgeon for spawning activity. This result was approximately consistent with the ranges proposed by most other researchers. The low limit of the velocity range was lower than that of other researchers. There may be two reasons for this result: the first was that the bottom velocity we analysed was lower than the surface velocity and vertical average velocity under the same conditions; the second was that our research time was after 2016, and the discharge during the spawning period was relatively low, so the velocity of the Chinese sturgeon signal was also relatively low.

Figure 1

Distribution map of Chinese sturgeon signals, where indicates Chinese sturgeon signals monitored in 2016, ∆ indicates those in 2017, □ indicates those in 2018, and ✩ indicates those in 2019. Map generated in ArcGIS Pro (https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview).

Full size image
Figure 2

Plots of the frequency for the different flow velocity ranges of Chinese sturgeon signals.

Full size image

Different opening modes with identical discharge

The discharge of 6150 m3/s on November 24, 2016, when the latest wild reproduction of Chinese sturgeon occurred, was used to study the flow velocity distribution with different opening modes. The specific opening mode cases are shown in Table 1. Case 1 was the actual situation, and the Dajiang Plant featured 7 open units: #8, #11, #13, #14, #16, #19, and #21. According to the amounts of electricity generated by Dajiang Plant and Erjiang Plant on that day, the proportion of the Dajiang River flow was 58.8%, and the average discharge of each unit was 516.6 m3/s. Case 2 and case 3 featured 7 open units with the same discharge, but in case 2, units #15–21 were continuously open on the right-side (facing downstream), and in case 3, units #8–14 were continuously open near the left side. Case 4 and case 5 were the most concentrated conditions with the discharge of 6150 m3/s because the maximum through-discharge for each unit in the Dajiang Plant is 825 m3/s19. In these cases, at least 5 units were open with an average discharge of 723 m3/s per unit. Case 4 involved continuously opening units #8–12 on the left side, and case 5 involved continuously opening units #17–21 on the right side. Case 6 involved simultaneously opening 14 units on Dajiang River, and the average discharge of each unit was 258.3 m3/s.

Table 1 Calculation cases with different opening modes of units under the identical discharge.
Full size table

Figure 3 shows the flow fields of the spawning ground under different opening modes with identical discharge. By comparing the areas with a velocity threshold range of 0.6–1.5 m/s in different cases, the most favourable opening mode was determined. In case 1, the velocity at the outlet of the units was higher than the 1.5 m/s velocity threshold, but the discharge of each unit was only 516.6 m3/s, so the high-velocity range was limited, and most areas were suitable. In case 2 and case 3, there was a large difference in proportions of suitable area. Because the left side was deeper than the right side, the flow velocity on the right side was higher under the same discharge, and case 3 more easily exceeded the flow threshold, which resulted in a larger unsuitable area. Case 2 was more suitable than case 1, which also demonstrated that opening the left-side units was more favourable. In case 4 and case 5, the proportions of suitable area were small. Because the units were concentrated, the discharge of each unit was too high, and the outlet velocity was more than 2 m/s, so a large area of high velocity appeared downstream of the units with backflow under the shut-down units. The proportion of suitable area in case 5 was larger than those in case 4 and case 3, which further indicates that opening the left-side units was more favourable than opening the right-side units. Case 6 was greater than that of any other case. Because the discharge of each unit was only 258.3 m3/s, the velocity of the unit outlet was less than 1.5 m/s, and almost all areas were suitable except for the small areas on both sides. The suitable-velocity area was the largest when all units of the Dajiang Plant of Gezhouba Dam were open; therefore, for a given discharge, it was best to open all units.

Figure 3

Flow field of the spawning ground in different opening modes with identical discharge, where the numbers at the top of each picture are the numbers of units to open, and the arrows indicate the direction of the water flow. Maps generated in Tecplot360 EX 2020 R1 (https://www.tecplot.com/products/tecplot-360/).

Full size image

Different discharges under identical opening mode

The velocity distribution of the spawning field is affected by the opening mode of the units and discharge of Gezhouba Dam. To study the effect of different discharges, 14 cases were simulated, as shown in Table 2. All units of the Dajiang Plant were considered open because the proportion of suitable area was expected to be maximal under such circumstances. From 1982 to the present, the discharge during the spawning day of Chinese sturgeon under Gezhouba Dam has a wide range: the highest discharge was 27,290 m3/s in 1990, and the lowest discharge was 5590 m3/s in 2012. However, the highest design discharge of the Gezhouba Dam units is 17,930 m3/s20. Once the design discharge is exceeded, the spillway on Erjiang River discharges water, and the velocity distribution of the study area is not affected. Therefore, case 1 represents the lowest discharge of 5590 m3/s, and case 2 represents a discharge of 6000 m3/s. For each subsequent case, the discharge was increased by 1000 m3/s to case 13 with the highest flow of 17,930 m 3/s. In case 14, all units reached the design discharge, and the discharge of each unit was 825 m3/s19.

Table 2 Calculation cases with the same opening mode under different discharges.
Full size table

Figure 4 shows the proportion of suitable-velocity area with all units open under different discharges. According to the calculation results, the proportion of suitable area slightly fluctuated at approximately 96.2% for discharges of 5590–11,000 m3/s. Because the discharge of each unit was low, the velocity of the unit outlet was low, and most areas were within the velocity threshold. Therefore, it is advantageous to open all units when the discharge is low. After the discharge reached 12,000 m3/s, the proportion of suitable area rapidly decreased. Because the discharge of each unit was high, on the right side of Dajiang River, the velocity of the unit outlet exceeded the velocity threshold and increased with increases in discharge, and the range of effect gradually increased. In the last case, the proportion of suitable area was only 6% when the units reached the designed discharge of 825 m3/s. Because the discharge of each unit was too high, almost all areas exceeded the velocity threshold except for small areas on both sides. Therefore, at discharges below 12,000 m3/s, opening all units is favourable, and at discharge above 12,000 m3/s, a higher discharge corresponds to more unfavourable conditions.

Figure 4

Proportions of the suitable-velocity area with all units opened under different discharges.

Full size image

Optimal scheme under high-flow conditions

High-flow conditions at Gezhouba Dam are considered those that exceed 12,000 m3/s because of the substantive decline in suitable habitat area at higher discharges. Because opening the units on the left side of the Dajiang Plant provides a more uniform, suitable habitat, we evaluated 20 cases with a left-side opening mode under different discharge, as shown in Table 3. Because the highest discharge of each unit in the Dajiang Plant is 825 m3/s, at least 9 units must be open when the discharge is 12,000 m3/s. Case 1 was designed to open 9 units on the left, i.e., units #13–21, and the discharge of each unit was 784 m3/s. Cases 2–5 increased by 1 unit from left to right until 13 units were opened. For discharges of 13,000 m3/s, 14,000 m3/s, 15,000 m3/s, and 16,000 m3/s, at least 10, 10, 11, and 12 units were opened. When the discharge was 17,000 m3/s and 17,930 m3/s, at least 13 units were open.

Table 3 Calculation cases with different opening modes under high-flow conditions.
Full size table

Figure 5 shows the proportions of suitable area for different opening modes under high-flow conditions. The calculation results show that when the discharge was 12,000 m3/s, 13,000 m3/s, and 14,000 m3/s, the proportion of suitable area showed a parabolic trend with the increase in number of units. When the discharge was 12,000 m3/s, the proportion of suitable area with 11 open units on the left was the largest, which was 8.7% larger than the value for all open units and 15% larger than the value for the lowest number of open units. When the discharge was 13,000 m3/s, 12 open units on the left had the largest proportion of suitable-flow-velocity area. When the discharge was 14,000 m3/s, the proportions of suitable area produced by opening 12 and 13 units on the left were the largest. The proportion of suitable area of the lowest number of open units was usually minimal because the discharge of each unit was too high, which resulted in a large area of high velocity that was not suitable for Chinese sturgeon to spawn. Because of the underwater topography, opening the left-side units was more favourable than opening the right-side units, so for all open units, the proportions of suitable area will be lower, and the number of units opened in the middle will be the most advantageous. For a discharge of 15,000 m3/s, with the increase in number of units, the proportion of suitable area increased, and there was no parabolic trend because the discharge of each unit exceeded 678 m3/s; thus, on the left side, there was a large area of high velocity, and the effect extended very far, which was not suitable for Chinese sturgeon.

Figure 5

Proportions of the suitable area for different opening modes under high-flow conditions, where 12,000–09 on the x-axis indicates that the discharge is 12,000 m3/s, and 9 units are open on the left.

Full size image


Source: Ecology - nature.com

3 Questions: Secretary Kathleen Theoharides on climate and energy in Massachusetts

Forest canopy mitigates soil N2O emission during hot moments