in

Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi

  • 1.

    Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manag. 33, 528–544 (2004).

    Article 

    Google Scholar 

  • 2.

    Six, J., Elliot, E. T. & Paustian, K. Soil microaggregate turnover and microaggregate formation: A mechanism for C organic under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Reganold, J. P., Glover, J. D., Andrews, P. K. & Hinman, H. R. Sustainability of three apple production systems. Nature 410, 926–930 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Aziz, I., Mahmood, T. & Islam, K. R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Till. Res. 131, 28–35 (2013).

    Article 

    Google Scholar 

  • 7.

    Gautam, A., Guzman, J., Kovacs, P. & Kumar, S. Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2021.1887480 (2021).

    Article 

    Google Scholar 

  • 8.

    Lin, Y., Ye, G., Liu, D., Fan, J. & Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134, 187–196 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Six, J., Bossuyt, H., DeGryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79, 7–31 (2004).

    Article 

    Google Scholar 

  • 10.

    Kumar, R., Rawat, K. S., Singh, J., Singh, A. & Rai, A. Soil aggregation dynamics and carbon sequestration. J. Appl. Nat. Sci. 5, 250–267 (2013).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Lehmann, A., Zheng, W. S. & Rillig, M. C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 1, 1828–1835 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5), 1028–1046 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Miller, R. M. & Jastrow, J. D. Mycorrhizal fungi influence soil structure. In Arbuscular Mycorrhizas: Molecular Biology and Physiology (eds Kapulnik, Y. & Douds, D. D.) 3–18 (Kluwer, 2000).

    Chapter 

    Google Scholar 

  • 14.

    Leifheit, E. E., Veresoglou, S. D., Lehmann, A., Morris, E. K. & Rillig, M. C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil 374, 523–537 (2014).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Lehmann, A., Leifheit, E. F. & Rillig, M. C. Mycorrhizas and Soil Aggregation (Elsevier, 2017).

    Book 

    Google Scholar 

  • 16.

    Bethlenfalvay, G. J., Cantrell, I. C., Mihara, K. L. & Schreiner, R. P. Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol. Fertil. Soil. 28, 356–363 (1999).

    Article 

    Google Scholar 

  • 17.

    Rashid, M. I. et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 183, 26–41 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Velmourougane, K., Prasanna, R. & Saxena, A. K. Agriculturally important microbial biofilms: Present status and future prospects. J. Basic Microbiol. 57, 548–573 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Bomfeti, C. A. et al. Exopolysaccharides produced by the symbiotic nitrogen fixing bacteria of leguminosae. Rev. Bras. Cienc. Sol. 35, 657–671 (2011).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Daynes, C. N., Zhang, N., Saleeba, J. A. & McGee, P. A. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil Biol. Biochem. 48, 151–161 (2012).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Bystrianský, L. et al. Observations on two microbial life strategies in soil: Planktonic and biofilmforming microorganisms are separable. Soil Biol. Biochem. 136, 107535 (2019).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Rillig, M. C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84, 355–363 (2004).

    Article 

    Google Scholar 

  • 23.

    Yang, Y., Chuangjun, H., Huang, L., Ban, Y. & Tang, M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 12, e0182264 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Baldock, J. A. Interactions of organic materials and microorganisms with minerals in the stabilization of soil structure. In Interactions Between Soil Particles and Microorganisms (eds Huang, P. M. et al.) (Wiley, 2002).

    Google Scholar 

  • 25.

    Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33, 141–163 (1982).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Martens, D. A. Management and crop residue influence soil aggregate stability. J. Environ. Qual. 29, 723–727 (2000).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Aiken, G. R., McKnight, D. M., Wershaw, R. L. & MacCarthy, P. Humic Substances in Soil, Sediment, and Water (Wiley, 1985).

    Google Scholar 

  • 28.

    Jandl, R. & Sletten, R. S. Mineralization of forest soil carbon: Interactions with metals. J. Plant Nutr. Soil Sci. 162, 623–629 (1999).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Bipfubusa, M., Angers, D. A., N’Dayegamiye, A. & Antoun, H. Soil aggregation and biochemical properties following the application of fresh and composted organic amendments. Soil Sci. Soc. Am. J. 72, 160–166 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Jiao, Y., Whalen, J. K. & Hendershot, W. H. No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma 134, 24–33 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Gielnik, A. et al. Effect of digestate application on microbial respiration and bacterial communities’ diversity during bioremediation of weathered petroleum hydrocarbons contaminate. Sci. Total Environ. 670, 271–281 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Erktan, A., Rillig, M., Carminati, A., Jousset, A. & Scheu, S. Fungal and bacterial predator-prey systems influence soil aggregate formation and stabilization. Geophys. Res. Abstracts 21, 1–1 (2019).

    Google Scholar 

  • 33.

    Rillig, M. C. et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 205, 1385–1388 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Kandeler, E. Aggregate stability. In Methods in Soil Biology (eds Schiner, F. et al.) (Springer, 1996).

    Google Scholar 

  • 35.

    Demyan, M. S. et al. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. Eur. J. Soil Sci. 63(2), 189–199 (2012).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Körschens, M., Schulz, E. & Behm, R. Hot water extractable carbon and nitrogen of soils as a criterion for their ability of N-release. Zentralbl. Mikrobiol. 145, 305–311 (1990).

    Article 

    Google Scholar 

  • 37.

    Wright, S. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Bradford, M. M. A rapid and senstive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Thonar, C., Erb, A. & Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Res. 12, 219–232 (2012).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Simon, L. M., Lalonde, T. D. & Bruns, T. D. Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291–295 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Lee, J., Lee, S. & Young, J. P. W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 65, 339–349 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Ampe, F., Omar, N. B., Moizan, C., Wacher, C. & Guyot, J.-P. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65, 5464–5473 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Muyzer, G., de Wall, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: Increasing your power. Oikos 108, 643–647 (2005).

    Article 

    Google Scholar 

  • 46.

    ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.10). (Biometris, Wageningen University & Research, 2018).


  • Source: Ecology - nature.com

    Why the Earth needs a course correction now

    Diving into the global problem of technology waste