Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).
Google Scholar
Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 7, 529–534 (2017).
Google Scholar
Calef, M. P., McGuire, A. D. & Chapin, F. S. Human influences on wildfire in Alaska from 1988 through 2005: an analysis of the spatial patterns of human impacts. Earth Interact. 12, 1–17 (2008).
Google Scholar
McCarty, J. L., Smith, T. E. L. & Turetsky, M. R. Arctic fires re-emerging. Nat. Geosci. 13, 658–660 (2020).
Google Scholar
Irannezhad, M., Liu, J., Ahmadi, B. & Chen, D. The dangers of Arctic zombie wildfires. Science 369, 1171 (2020).
Google Scholar
Rein, G. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 15–34 (Wiley-Blackwell, 2013).
Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).
Google Scholar
Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2, 68–74 (2014).
Google Scholar
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).
Google Scholar
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Google Scholar
Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31 (2011).
Google Scholar
Walker, X. J. et al. Soil organic layer combustion in boreal black spruce and jack pine stands of the Northwest Territories, Canada. Int. J. Wildl. Fire 27, 125–134 (2018).
Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).
Google Scholar
Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).
Google Scholar
Coops, N. C., Hermosilla, T., Wulder, M. A., White, J. C. & Bolton, D. K. A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade. PLoS One 13, e0197218 (2018).
Google Scholar
USDA Forest Service, USFS-USDI and NASF. Large Fire Cost Reduction Action Plan https://www.fs.usda.gov/sites/default/files/media_wysiwyg/5100_largefirecostreductionaction_mar_03.pdf (2003).
Podur, J. & Wotton, M. Will climate change overwhelm fire management capacity? Ecol. Modell. 221, 1301–1309 (2010).
Tymstra, C., Stocks, B. J., Cai, X. & Flannigan, M. D. Wildfire management in Canada: review, challenges and opportunities. Prog. Disaster Sci. 5, 100045 (2020); erratum 8, 100045 (2020).
Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. 107, https://doi.org/10.1029/2001JD000484 (2002).
Wiggins, E. B. et al. Evidence for a larger contribution of smoldering combustion to boreal forest fire emissions from tower observations in Alaska. Atmos. Chem. Phys. https://doi.org/10.5194/acp-2019-1067 (in the press).
Rein, G., Garcia, J., Simeoni, A., Tihay, V. & Ferrat, L. Smouldering natural fires: comparison of burning dynamics in boreal peat and Mediterranean humus. WIT Trans. Ecol. Environ. 119, 183–192 (2008).
Baber, C. & McMaster, R. 2019 Alaska Statewide Annual Operating Plan. https://fire.ak.blm.gov/administration/asma.php (Alaska Statewide Master Agreement, 2019).
Alaska Interagency Coordination Center. 2010 Alaska fire statistics. https://www.frames.gov/catalog/12055 (Wildland Fire Summary and Statistics Annual Report, 2010).
Alaska Division of Forestry. State Forestry monitoring hot spots that overwintered from Deshka Landing Fire. https://akfireinfo.com/2020/04/10/state-forestry-monitoring-hot-spots-that-overwintered-from-deshka-landing-fire/ (2020).
Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).
Google Scholar
Kasischke, E. S., Rupp, T. S. & Verbyla, D. L. in Alaska’s Changing Boreal Forest (eds Chapin, F. S. III, Oswood, M. et al.) 285–301 (Oxford Univ. Press, 2006).
Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).
Google Scholar
Painter, T. H. et al. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 113, 868–879 (2009).
Google Scholar
Scholten, R. C., Jandt, R. R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. ABoVE: Ignitions, burned area and emissions of fires in AK, YT, and NWT, 2001–2018. https://doi.org/10.3334/ORNLDAAC/1812 (2020).
Xiao, J. & Zhuang, Q. Drought effects on large fire activity in Canadian and Alaskan forests. Environ. Res. Lett. 2, 044003 (2007).
Google Scholar
Flannigan, M. D. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manage. 294, 54–61 (2013).
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
Google Scholar
Adams, W. H. The Role of Fire in the Alaska Taiga. An Unsolved Problem (Bureau of Land Management, State Office, Anchorage, AK, 1974); preprint at https://scholarworks.alaska.edu/handle/11122/6675 (2016).
Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).
Google Scholar
Kane, E. S., Kasischke, E. S., Valentine, D. W., Turetsky, M. R. & McGuire, A. D. Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: implications for black carbon accumulation. J. Geophys. Res. Biogeosci. 112, 1–11 (2007).
Hoy, E. E., Turetsky, M. R. & Kasischke, E. S. More frequent burning increases vulnerability of Alaskan boreal black spruce forests. Environ. Res. Lett. 11, 095001 (2016).
Google Scholar
Miyanishi, K. & Johnson, E. A. Process and patterns of duff consumption in the mixedwood boreal forest. Can. J. For. Res. 32, 1285–1295 (2002).
Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region — spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL025677 (2006).
Johnstone, J. F. et al. Factors shaping alternate successional trajectories in burned black spruce forests of Alaska. Ecosphere 11, https://doi.org/10.1002/ecs2.3129 (2020).
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).
Andreae, M. O. & Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 15, 955–966 (2001).
Google Scholar
Dean, J. F. et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207–250 (2018).
Google Scholar
Beaudoin, A., Bernier, P. Y., Villemaire, P., Guindon, L. & Guo, X. J. Tracking forest attributes across Canada between 2001 and 2011 using a k nearest neighbors mapping approach applied to MODIS imagery. Can. J. For. Res. 48, 85–93 (2018).
Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosci. Discuss. 12, 3579–3601 (2015).
Google Scholar
Kasischke, E. S. et al. Quantifying burned area for North American forests: implications for direct reduction of carbon stocks. J. Geophys. Res. Biogeosci. 116, 1–17 (2011).
Farukh, M. A. & Hayasaka, H. Active forest fire occurrences in severe lightning years in Alaska. J. Nat. Disaster Sci. 33, 71–84 (2012).
Burrows, W. R. & Kochtubajda, B. A decade of cloud-to-ground lightning in Canada: 1999-2008. Part 1: flash density and occurrence. Atmos.-Ocean 48, 177–194 (2010).
Bieniek, P. A. et al. Lightning variability in dynamically downscaled simulations of Alaska’s present and future summer climate. J. Appl. Meteorol. Climatol. 59, 1139–1152 (2020).
Google Scholar
Kochtubajda, B. et al. Exceptional cloud-to-ground lightning during an unusually warm summer in Yukon, Canada. J. Geophys. Res. Atmos. 116, https://doi.org/10.1029/2011JD016080 (2011).
Kochtubajda, B., Stewart, R. & Tropea, B. Lightning and weather associated with the extreme 2014 wildfire season in Canada’s Northwest Territories. In Proceedings of the 24th International Lightning Detection Conference 1–4 (VAISALA, 2016).
Dowdy, A. J. & Mills, G. A. Atmospheric and fuel moisture characteristics associated with lightning-attributed fires. J. Appl. Meteorol. Climatol. 51, 2025–2037 (2012).
Google Scholar
Larjavaara, M., Pennanen, J. & Tuomi, T. J. Lightning that ignites forest fires in Finland. Agric. For. Meteorol. 132, 171–180 (2005).
Google Scholar
Duncan, B. W., Adrian, F. W. & Stolen, E. D. Isolating the lightning ignition regime from a contemporary background fire regime in east-central Florida, USA. Can. J. For. Res. 40, 286–297 (2010).
Veraverbeke, S. et al. Mapping the daily progression of large wildland fires using MODIS active fire data. Int. J. Wildl. Fire 23, 655–667 (2014).
Statistics Canada. Road Network File 2010. https://www150.statcan.gc.ca/n1/en/catalogue/92-500-X (2016).
Government of Yukon. Corporate Spatial Warehouse. ftp://ftp.geomaticsyukon.ca/GeoYukon/Transportation/Roads_1M/ (2018).
Rittger, K., Painter, T. H. & Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 51, 367–380 (2013).
Google Scholar
Gallant, A. L., Binnian, E. F., Omernik, J. M. & Shasby, M. B. Ecoregions of Alaska (Professional Paper 1567, USGS, 1995).
Canadian Council on Ecological Areas (CCEA). Canada ecozones. https://ccea-ccae.org/ecozones-downloads/ (2016).
Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).
Google Scholar
Van Wagner, C. E. Development and Structure of the Canadian Fire Weather Index System. Forestry Technical Report Vol. 35 (Canadian Forestry Service Headquarters, Ottawa, 1987).
York, A. D. & Jandt, R. R. Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management & Science: A Workshop Report www.frames.gov/catalog/57849 (University of Alaska, Fairbanks, 2019).
Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).
Google Scholar
Welch, B. L. The significance of the difference between two means when the population variances are unequal. Biometrika 29, 350–362 (1938).
Google Scholar
Welch, B. L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34, 28–35 (1947).
Google Scholar
Morin, P. et al. ArcticDEM; a publically available, high resolution elevation model of the Arctic. Geophys. Res. Abstr. 18, EGU2016-8396 (2016).
Porter, C. et al. ArcticDEM. https://doi.org/10.7910/DVN/OHHUKH (Harvard Dataverse, 2018).
Dai, C., Durand, M., Howat, I. M., Altenau, E. H. & Pavelsky, T. M. Estimating river surface elevation from arcticDEM. Geophys. Res. Lett. 45, 3107–3114 (2018).
Google Scholar
Hansen, M. C. et al. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact. 7, 1–15 (2003).
Pettinari, M. L. & Chuvieco, E. Generation of a global fuel data set using the fuel characteristic classification system. Biogeosciences 13, 2061–2076 (2016).
Google Scholar
Ottmar, R. D., Sandberg, D. V., Riccardi, C. L. & Prichard, S. J. An overview of the fuel characteristic classification system — quantifying, classifying, and creating fuelbeds for resource planning. Can. J. For. Res. 37, 2383–2393 (2007).
Riccardi, C. L. et al. The fuelbed: a key element of the fuel characteristic classification system. Can. J. For. Res. 37, 2394–2412 (2007).
Beaudoin, A., Bernier, P. Y., Villemaire, P., Guindon, L. & Guo, X. Species Composition, Forest Properties and Land Cover Types Across Canada’s Forests at 250m Resolution for 2001 and 2011. https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 (Natural Resources Canada, Canadian Forest Service, Laurentian Forest Centre, 2017).
Hugelius, G. et al. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).
Google Scholar
Source: Ecology - nature.com