in

Palaeoclimate has a major effect on the diversity of endemic species in the hotspot of mountain biodiversity in Tajikistan

  • 1.

    Lohr, T. A Short Story About the Geological History of the Pamir (University of Mining and Technology Freiberg, 2001).

    Google Scholar 

  • 2.

    Safarov, N. National Strategy and Action Plan on Conservation and Sustainable Use of Biodiversity (Governmental Working Group of the Republic of Tajikistan, 2003).

    Google Scholar 

  • 3.

    Nowak, A., Nowak, S. & Nobis, M. Distribution patterns, ecological characteristic and conservation status of endemic plants of Tadzhikistan: A global hotspot of diversity. J. Nat. Conserv. 19, 296–305 (2011).

    Article 

    Google Scholar 

  • 4.

    Nowak, A. et al. Red List of vascular plants of Tajikistan: The core area of the Mountains of Central Asia global biodiversity hotspot. Sci. Rep. 10, 6235 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Bagheri, A., Maassoumi, A. A., Rahiminejad, M. R., Brassac, J. & Blattner, F. R. Molecular phylogeny and divergence times of Astragalus section Hymenostegis: An analysis of a rapidly diversifying species group in Fabaceae. Sci. Rep. 7, 14033 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Mittermeier, R. A. et al. Hotspots Revisited: Earth’s Biologically Richest and Most Threatened Terrestrial Ecoregions. (Conservation International, 2005).

  • 7.

    Abramowski, U. et al. Pleistocene glaciations of Central Asia: Results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quat. Sci. Rev. 25, 1080–1096 (2006).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Cowling, R. M. & Lombard, A. T. Heterogeneity, speciation/extinction history and climate: Explaining regional plant diversity patterns in the Cape Floristic Region. Divers. Distrib. 8, 163–179 (2002).

    Article 

    Google Scholar 

  • 9.

    Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).

    Article 

    Google Scholar 

  • 10.

    López-Pujol, J., Zhang, F. M., Sun, H. Q., Ying, T. S. & Ge, S. Centres of plant endemism in China: Places for survival or for speciation?. J. Biogeogr. 38, 1267–1280 (2011).

    Article 

    Google Scholar 

  • 11.

    Chen, X.-Y. & He, F. Speciation and endemism under the model of island biogeography. Ecology 90, 39–45 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Bruchmann, I. & Hobohm, C. Factors that create and increase endemism. In Endemism in Vascular Plants (ed. Hobohm, C.) 51–68 (Springer, 2014).

    Chapter 

    Google Scholar 

  • 13.

    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. U. S. A. 97, 9115–9120 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301 (2002).

    Article 

    Google Scholar 

  • 15.

    Mucina, L. & Wardell-Johnson, G. W. Landscape age and soil fertility, climatic stability, and fire regime predictability: Beyond the OCBIL framework. Plant Soil 341, 1–23 (2011).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Tzedakis, P. C. Museums and cradles of Mediterranean biodiversity. J. Biogeogr. 36, 1033–1034 (2009).

    Article 

    Google Scholar 

  • 17.

    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U. S. A. 104, 5925–5930 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Noroozi, J., Pauli, H., Grabherr, G. & Breckle, S. W. The subnival-nival vascular plant species of Iran: A unique high-mountain flora and its threat from climate warming. Biodivers. Conserv. 20, 1319–1338 (2011).

    Article 

    Google Scholar 

  • 19.

    Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. In Alpine Biodiversity in Europe (eds Nagy, L. et al.) 195–207 (Springer, 2003).

    Chapter 

    Google Scholar 

  • 20.

    Agakhanjanz, O. & Breckle, S. W. Origin and evolution of the mountain flora in middle asia and neighbouring mountain regions. In Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences Ecological Studies (Analysis and Synthesis) Vol. 113 (eds Chapin, F. S. & Körner, C.) 63–80 (Springer, 1995).

    Google Scholar 

  • 21.

    Noroozi, J., Akhani, H. & Willner, W. Phytosociological and ecological study of the high alpine vegetation of Tuchal mountains (Central Alborz, Iran). Phytocoenologia 40, 293–321 (2010).

    Article 

    Google Scholar 

  • 22.

    Goldblatt, P. & Manning, J. C. Plant Diversity of the Cape Region of Southern Africa. Ann. Mo. Bot. Gard. 89, 281–302 (2002).

    Article 

    Google Scholar 

  • 23.

    Bond, P. & Goldblatt, P. Plants of the Cape fora: a descriptive catalogue. J. S Afr. Bot. Suppl. 13, 1–455 (1984).

    Google Scholar 

  • 24.

    Panda, R. M., Behera, M. D., Roy, P. S. & Biradar, C. Energy determines broad pattern of plant distribution in Western Himalaya. Ecol. Evol. 7, 10850–10860 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Nowak, A., Nowak, S., Nobis, M. & Nobis, A. A report on the conservation status of segetal weeds in Tajikistan. Weed Res. 54, 635–648 (2014).

    Article 

    Google Scholar 

  • 26.

    Nobis, M., Gudkova, P. D., Nowak, A., Sawicki, J. & Nobis, A. A synopsis of the genus Stipa (Poaceae) in Middle Asia, including a key to species identyfication, an annoted checklist and phytogeographical analyses. Ann. Missouri Bot. Gard. 105, 1–63 (2020).

    Article 

    Google Scholar 

  • 27.

    Thompson, J. N. The Geographic Mosaic of coevolution (Chicago Univ Press, 2005).

    Book 

    Google Scholar 

  • 28.

    Thompson, J. N. Four central points about coevolution. Evol. Educ. Outreach 3, 7–13 (2010).

    Article 

    Google Scholar 

  • 29.

    Thrall, P. H., Hochberg, M. E., Burdon, J. J. & Bever, J. D. Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol. Evol. 22, 120–126 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Navarro-Fernández, C. M., Aroca, R. & Barea, J. M. Influence of arbuscular mycorrhizal fungi and water regime on the development of endemic Thymus species in dolomitic soils. Appl. Soil Ecol. 48, 31–37 (2011).

    Article 

    Google Scholar 

  • 31.

    Zubek, S., Nobis, M., Błaszkowski, J., Mleczko, P. & Nowak, A. Fungal root endophyte associations of plants endemic to the Pamir Alay Mountains of Central Asia. Symbiosis 54, 139–149 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Lambers, H., Chapin, F. S. III. & Pons, T. L. Plant Physiological Ecology (Springer, 2008).

    Book 

    Google Scholar 

  • 33.

    Lambers, H., Brundrett, M. C., Raven, J. A. & Hopper, S. D. Plant mineral nutrition in ancient landscapes: High plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334, 11–31 (2010).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Hopper, S. D. OCBIL theory: Towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322, 49–86 (2009).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Ellison, A. M. & Gotelli, N. J. Energetics and the evolution of carnivorous plants – Darwin’s ‘most wonderful plants in the world’. J. Exp. Bot. 60, 19–42 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Merckx, V., Bidartondo, M. I. & Hynson, N. A. Myco-heterotrophy: When fungi host plants. Ann. Bot. 104, 1255–1261 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Huang, B. H. et al. Differential genetic responses to the stress revealed the mutation-order adaptive divergence between two sympatric ginger species. BMC Genom. 19, 692 (2018).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Turner, J. R. G., Gatehouse, C. M. & Core, C. A. Does solar energy control organic diversity? Butterflies moths and the British climate. Oikos 48, 195–205 (1987).

    Article 

    Google Scholar 

  • 39.

    Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).

    Article 

    Google Scholar 

  • 40.

    Makhmadaliev, B., Novikov, V., Kayumov, A., Karimov, U. & Perdomo, M. National Action Plan of the Republic of Tajikistan for Climate Change Mitigation. (Tajik Met Service, 2003).

  • 41.

    Nedzvedskiy, A. P. Geologicheskoe stroenye. In Atlas Tajikskoi SSR (eds Narzikulov, I. K. & Stanyukovich, K. W.) 14–15 (Akademia Nauk Tajikskoi SSR, 1968).

    Google Scholar 

  • 42.

    Latipova, W. A. Kolichestvo osadkov. In Atlas Tajikskoi SSR (eds Narzikulov, I. K. & Stanyukovich, K. W.) 68–69 (Akademia Nauk Tajikskoi SSR, 1968).

    Google Scholar 

  • 43.

    Narzikulov, I. K. & Stanyukovich, K. W. Atlas Tajikskoi SSR. (Akademia Nauk Tajikskoi SSR, 1968).

  • 44.

    Rivas-Martínez, S., Rivas-Sáenz, S. & Penas, Á. Worldwide bioclimatic classification system. Glob. Geobot. 1, 1–638 (2011).

    Google Scholar 

  • 45.

    Djamali, M., Brewer, S., Breckle, S. W. & Jackson, S. T. Climatic determinism in phytogeographic regionalization: A test from the Irano-Turanian region, SW and Central Asia. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 237–249 (2012).

    Google Scholar 

  • 46.

    Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. I, Paprotnikoobraznye – Zlaki. (Izdatelstvo Akademii Nauk SSSR, 1957).

  • 47.

    Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. II, Osokovye—Orkhidnye. (Izdatelstvo Akademii Nauk SSSR, 1963).

  • 48.

    Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. III, Opekhovye—Gvozdichnye. (Izdatelstvo Nauka, 1968).

  • 49.

    Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. IV, Rogolistnikovye—Rozotsvetnye. (Izdatelstvo Nauka, 1975).

  • 50.

    Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. V, Krestotsvetne—Bobovye. (Izdatelstvo Nauka, 1978).

  • 51.

    Ovchinnikov, P. N. Flora Tadzhikskoi SSR. T. VI, Bobovye (rod Astragal). (Izdatelstvo Nauka, 1981).

  • 52.

    Kochkareva, T. F. Flora Tadzhikskoi SSR. T. VIII. Kermekovye—Podorozhnikovye. (Izdatelstvo Nauka, 1986).

  • 53.

    Kinzikaeva, G. K. Flora Tadzhikskoi SSR. T. IX. Marenovye – Slozhnotsvetnye. (Izdatelstvo Nauka, 1988).

  • 54.

    Rasulova, M. R. Flora Tadzhikskoi SSR. T. X, Slozhnotsvetnye. (Izdatelstvo Nauka, 1991).

  • 55.

    Grubov, V. I. Schlussbetrachtung zum Florenwerk ‘Rastenija Central’noj Azii’ [Die Pflanzen Zentralasiens] und die Begründung der Eigenständigkeit der mongolischen Flora. Feddes Repert. 121, 7–13 (2010).

    Article 

    Google Scholar 

  • 56.

    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org). (2008).

  • 57.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Zuur, A. F., Ieno, E. N. & Erik, H. W. G. Meesters A Beginner’s Guide to R (Springer, 2009).

    MATH 
    Book 

    Google Scholar 

  • 59.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 027–046 (2013).

    Article 

    Google Scholar 

  • 60.

    Wood, S. N. Generalized Additive Models An Introduction with R (Chapman and Hall/CRC, 2017).

    MATH 
    Book 

    Google Scholar 

  • 61.

    Therneau, T. & Atkinson, B. rpart: Recursive Partitioning and Regression Trees. R package version 4.1-13 (2018).

  • 62.

    De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Crossing disciplines, adding fresh eyes to nuclear engineering

    Predicting building emissions across the US