Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).
Google Scholar
Cam, E. & Aubry, L. Early development, recruitment and life history trajectory in long-lived birds. J. Ornithol. 152, 187–201 (2011).
Google Scholar
Cam, E., Monnat, J. Y. & Hines, J. E. Long-term fitness consequences of early conditions in the kittiwake. J. Anim. Ecol. 72, 411–424 (2003).
Google Scholar
Tilgar, V., Mänd, R., Kilgas, P. & Mägi, M. Long-term consequences of early ontogeny in free-living Great Tits Parus major. J. Ornithol. 151, 61–68 (2010).
Google Scholar
Stamps, J. A. The silver spoon effect and habitat selection by natal dispersers. Ecol. Lett. 9, 1179–1185 (2006).
Google Scholar
Briga, M., Koetsier, E., Boonekamp, J. J., Jimeno, B. & Verhulst, S. Food availability affects adult survival trajectories depending on early developmental conditions. Proc. R. Soc. B Biol. Sci. 284, 20162287 (2017).
Google Scholar
Cooper, E. B. & Kruuk, L. E. Ageing with a silver-spoon: A meta-analysis of the effect of developmental environment on senescence. Evol. Lett. 2, 460–471 (2018).
Google Scholar
Song, Z. et al. Silver spoon effects of hatching order in an asynchronous hatching bird. Behav. Ecol. Sociobiol. 30, 509–517 (2019).
Google Scholar
Descamps, S., Boutin, S., Berteaux, D., McAdam, A. G. & Gaillard, J. M. Cohort effects in red squirrels: The influence of density, food abundance and temperature on future survival and reproductive success. J. Anim. Ecol. 77, 305–314 (2008).
Google Scholar
Van De Pol, M., Bruinzeel, L. W., Heg, D., Van Der Jeugd, H. P. & Verhulst, S. A silver spoon for a golden future: Long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). J. Anim. Ecol. 75, 616–626 (2006).
Google Scholar
Murgatroyd, M. et al. Sex-specific patterns of reproductive senescence in a long-lived reintroduced raptor. J. Anim. Ecol. 87, 1587–1599 (2018).
Google Scholar
Dmitriew, C. & Rowe, L. Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). J. Evol. Biol. 20, 1298–1310 (2007).
Google Scholar
Hopwood, P. E., Moore, A. J. & Royle, N. J. Effects of resource variation during early life and adult social environment on contest outcomes in burying beetles: A context-dependent silver spoon strategy?. Proc. R. Soc. B Biol. Sci. 281, 20133102 (2014).
Google Scholar
Royle, N. J., Lindström, J. & Metcalfe, N. B. A poor start in life negatively affects dominance status in adulthood independent of body size in green swordtails Xiphophorus helleri. Proc. R. Soc. B Biol. Sci. 272, 1917–1922 (2005).
Google Scholar
Mugabo, M., Marquis, O., Perret, S. & Le Galliard, J. F. Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J. Evol. Biol. 23, 1886–1898 (2010).
Google Scholar
Vitikainen, E. I., Thompson, F. J., Marshall, H. H. & Cant, M. A. Live long and prosper: Durable benefits of early-life care in banded mongooses. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180114 (2019).
Google Scholar
Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055 (2016).
Google Scholar
Emaresi, G. et al. Melanin-specific life-history strategies. Am. Nat. 183, 269–280 (2014).
Google Scholar
Grunst, M. L. et al. Actuarial senescence in a dimorphic bird: Different rates of ageing in morphs with discrete reproductive strategies. Proc. R. Soc. B Biol. Sci. 285, 20182053 (2018).
Google Scholar
Nebel, C., Sumasgutner, P., McPherson, S. C., Tate, G. J. & Amar, A. Contrasting parental color-morphs increase regularity of prey deliveries in an African raptor. Behav. Ecol. 31, 1142–1149 (2020).
Google Scholar
Morosinotto, C. et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 196, 609–619 (2020).
Google Scholar
Chakarov, N., Boerner, M. & Krüger, O. Fitness in common buzzards at the cross-point of opposite melanin–parasite interactions. Funct. Ecol. 22, 1062–1069 (2008).
Google Scholar
Roulin, A. Proximate basis of the covariation between a melanin-based female ornament and offspring quality. Oecologia 140, 668–675 (2004).
Google Scholar
Rödel, H. G., Von Holst, D. & Kraus, C. Family legacies: short-and long-term fitness consequences of early-life conditions in female European rabbits. J. Anim. Ecol. 78, 789–797 (2009).
Google Scholar
Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).
Google Scholar
Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. B Biol. Sci. 273, 1375–1383 (2006).
Google Scholar
Norris, K. & Evans, M. R. Ecological immunology: Life history trade-offs and immune defense in birds. Behav. Ecol. Sociobiol. 11, 19–26 (2000).
Google Scholar
van der Most, P. J., de Jong, B., Parmentier, H. K. & Verhulst, S. Trade-off between growth and immune function: A meta-analysis of selection experiments. Funct. Ecol. 25, 74–80 (2011).
Google Scholar
Aastrup, C. & Hegemann, A. Jackdaw nestlings rapidly increase innate immune function during the nestling phase but no evidence for a trade-off with growth. Dev. Comparat. Immunol. 2, 103967 (2020).
Ratikainen, I. I. & Kokko, H. Differential allocation and compensation: Who deserves the silver spoon?. Behav. Ecol. Sociobiol. 21, 195–200 (2010).
Google Scholar
Limbourg, T., Mateman, A. C. & Lessells, C. M. Opposite differential allocation by males and females of the same species. Biol. Let. 9, 20120835 (2013).
Google Scholar
Järvistö, P. E., Calhim, S., Schuett, W., Velmala, W. & Laaksonen, T. Foster, but not genetic, father plumage coloration has a temperature-dependent effect on offspring quality. Behav. Ecol. Sociobiol. 69, 335–346 (2015).
Google Scholar
Pryke, S. R. & Griffith, S. C. Socially mediated trade-offs between aggression and parental effort in competing color morphs. Am. Nat. 174, 455–464 (2009).
Google Scholar
Amar, A., Koeslag, A. & Curtis, O. Plumage polymorphism in a newly colonized black sparrowhawk population: Classification, temporal stability and inheritance patterns. J. Zool. 289, 60–67 (2013).
Google Scholar
Tate, G., Sumasgutner, P., Koeslag, A. & Amar, A. Pair complementarity influences reproductive output in the polymorphic black sparrowhawk Accipiter melanoleucus. J. Avian Biol. 48, 387–398 (2017).
Google Scholar
Tinbergen, J. M. & Boerlijst, M. C. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59, 1113–1127 (1990).
Google Scholar
Cleasby, I. R., Nakagawa, S., Gillespie, D. O. S. & Burke, T. The influence of sex and body size on nestling survival and recruitment in the house sparrow. Biol. J. Lin. Soc. 101, 680–688 (2010).
Google Scholar
Christe, P., Møller, A. P. & de Lope, F. Immunocompetence and nestling survival in the house martin: The tasty chick hypothesis. Oikos 83, 175–179 (1998).
Google Scholar
Ringsby, T. H., Sæther, B.-E. & Solberg, E. J. Factors affecting juvenile survival in house sparrow Passer domesticus. J. Avian Biol. 29, 241–247 (1998).
Google Scholar
Losdat, S. et al. Nestling erythrocyte resistance to oxidative stress predicts fledging success but not local recruitment in a wild bird. Biol. Lett. 9, 20120888 (2013).
Google Scholar
Vermeulen, A., Müller, W. & Eens, M. J. Vitally important–does early innate immunity predict recruitment and adult innate immunity?. Ecol. Evol. 6, 1799–1808 (2016).
Google Scholar
Vennum, C. R. et al. Early life conditions and immune defense in nestling Swainson’s Hawks. Physiol. Biochem. Zool. 92, 419–429 (2019).
Google Scholar
Bowers, E. K. et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology 95, 3027–3034 (2014).
Google Scholar
Calder, P. C. & Sonnenfeld, G. in Nutrition, Immunity, and Infection 1–18 (CRC Press, 2017).
Google Scholar
Wilcoxen, T. E., Boughton, R. K. & Schoech, S. J. Selection on innate immunity and body condition in Florida scrub-jays throughout an epidemic. Biol. Let. 6, 552–554 (2010).
Google Scholar
Hegemann, A., Marra, P. P. & Tieleman, B. I. Causes and consequences of partial migration in a passerine bird. Am. Nat. 186, 531–546 (2015).
Google Scholar
Hegemann, A., Matson, K. D., Flinks, H. & Tieleman, B. I. Offspring pay sooner, parents pay later: Experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival. Front. Zool. 10, 77 (2013).
Google Scholar
Apanius, V. Ontogeny of Immune Function (Oxford University Press, 1998).
Klasing, K. C. & Leshchinksy, T. V. Functions, Costs, and Benefits of the Immune System During Development and Growth Ostrich, 69, 2817–2835 (1999).
Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).
Google Scholar
Costantini, D. & Moller, A. P. Does immune response cause oxidative stress in birds? A meta-analysis. Comparat. Biochem. Physiol. Part A 153, 339–344 (2009).
Google Scholar
Hanssen, S. A., Hasselquist, D., Folstad, I. & Erikstad, K. E. Costs of immunity: Immune responsiveness reduces survival in a vertebrate. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 925–930 (2004).
Google Scholar
Hanssen, S. A. Costs of an immune challenge and terminal investment in a long-lived bird. Ecology 87, 2440–2446 (2006).
Google Scholar
Matson, K. D., Ricklefs, R. E. & Klasing, K. C. A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev. Comp. Immunol. 29, 275–286 (2005).
Google Scholar
Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 57, 321–347 (1988).
Google Scholar
Dobryszycka, W. Biological functions of haptoglobin-new pieces to an old puzzle. Eur. J. Clin. Chem. Clin. Biochem. 35, 647–654 (1997).
Google Scholar
Matson, K. D., Horrocks, N. P. C., Versteegh, M. A. & Tieleman, B. I. Baseline haptoglobin concentrations are repeatable and predictive of certain aspects of a subsequent experimentally-induced inflammatory response. Comparat. Biochem. Physiol. Part A Mol. Integr. Physiol. 162, 7–15 (2012).
Google Scholar
Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).
Google Scholar
Hegemann, A., Matson, K. D., Both, C. & Tieleman, B. I. Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia 170, 605–618 (2012).
Google Scholar
Alexander, C. & Rietschel, E. T. Invited review: Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7, 167–202 (2016).
Hegemann, A., Matson, K. D., Versteegh, M. A., Villegas, A. & Tieleman, B. I. Immune response to an endotoxin challenge involves multiple immune parameters and is consistent among the annual-cycle stages of a free-living temperate zone bird. J. Exp. Biol. 216, 2573–2580 (2013).
Google Scholar
Vermeulen, A., Eens, M., Zaid, E. & Müller, W. Baseline innate immunity does not affect the response to an immune challenge in female great tits (Parus major). Behav. Ecol. Sociobiol. 70, 585–592 (2016).
Google Scholar
Vinterstare, J., Hegemann, A., Nilsson, P. A., Hulthén, K. & Brönmark, C. Defence versus defence: Are crucian carp trading off immune function against predator-induced morphology?. J. Anim. Ecol. 88, 1510–1521 (2019).
Google Scholar
Lei, B., Amar, A., Koeslag, A., Gous, T. A. & Tate, G. J. Differential haemoparasite intensity between black sparrowhawk (Accipiter melanoleucus) morphs suggests an adaptive function for polymorphism. PLoS ONE 8, e81607 (2013).
Google Scholar
Suri, J., Sumasgutner, P., Hellard, É., Koeslag, A. & Amar, A. Stability in prey abundance may buffer Black Sparrowhawks Accipiter melanoleucus from health impacts of urbanization. Ibis 159, 38–54 (2017).
Google Scholar
Råberg, L., Grahn, M., Hasselquist, D. & Svensson, E. On the adaptive significance of stress-induced immunosuppression. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1637–1641 (1998).
Google Scholar
Sadd, B. M. & Siva-Jothy, M. T. Self-harm caused by an insect’s innate immunity. Proc. R. Soc. Lond. Ser. B Biol. Sci. 273, 2571–2574 (2006).
Gyan, B. et al. Elevated levels of nitric oxide and low levels of haptoglobin are associated with severe malarial anaemia in African children. Acta Trop. 83, 133–140 (2002).
Google Scholar
Alonso-Alvarez, C. & Tella, J. L. Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Can. J. Zool. 79, 101–105 (2001).
Google Scholar
Merino, S. et al. Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim. Behav. 58, 219–222 (1999).
Google Scholar
Ochsenbein, A. F. & Zinkernagel, R. M. Natural antibodies and complement link innate and acquired immunity. Immunol. Today 21, 624–630 (2000).
Google Scholar
Boes, M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 37, 1141–1149 (2000).
Google Scholar
Grönwall, C., Vas, J. & Silverman, G. J. Protective roles of natural IgM antibodies. Front. Immunol. 3, 66 (2012).
Google Scholar
Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. Trans. R. Soc. B Biol. Sci. 363, 321–339 (2008).
Google Scholar
Klasing, K. C. The costs of immunity. Acta Zool. Sin. 50, 961–969 (2004).
Google Scholar
Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: Their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).
Google Scholar
Glazier, D. S. Trade-offs between reproductive and somatic (storage) investments in animals: A comparative test of the Van Noordwijk and De Jong model. Evol. Ecol. 13, 539–555 (1999).
Google Scholar
Newton, I., McGrady, M. J. & Oli, M. K. A review of survival estimates for raptors and owls. Ibis 158, 227–248 (2016).
Google Scholar
Kennedy, P. L. & Ward, J. M. Effects of experimental food supplementation on movements of juvenile northern goshawks (Accipiter gentilis atricapillus). Oecologia 134, 284–291 (2003).
Google Scholar
Terraube, J., Vasko, V. & Korpimäki, E. Mechanisms and reproductive consequences of breeding dispersal in a specialist predator under temporally varying food conditions. Oikos 124, 762–771 (2015).
Google Scholar
Delgado, M. D. M., Penteriani, V. & Nams, V. O. How fledglings explore surroundings from fledging to dispersal. A case study with Eagle Owls Bubo bubo. Ardea 97, 7–15 (2009).
Google Scholar
Rosenfield, R. N. et al. Body mass of female Cooper’s Hawks is unrelated to longevity and breeding dispersal: Implications for the study of breeding dispersal. J. Raptor Res. 50, 305–312 (2016).
Google Scholar
Klein, S. L. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol. 26, 247–264 (2004).
Google Scholar
Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626 (2016).
Google Scholar
Zuk, M. Reproductive strategies and disease susceptibility: An evolutionary viewpoint. Parasitol. Today 6, 231–233 (1990).
Google Scholar
Zuk, M. & McKean, K. A. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 26, 1009–1024 (1996).
Google Scholar
Alexander, J. & Stimson, W. H. Sex hormones and the course of parasitic infection. Parasitol. Today 4, 189–193 (1988).
Google Scholar
Roulin, A. et al. Which chick is tasty to parasites? The importance of host immunology vs. parasite life history. J. Anim. Ecol. 72, 75–81 (2003).
Google Scholar
Hockey, P. A. R., Dean, W. R. J., Ryan, P. G., Maree, S. & Brickman, B. M. Roberts’ Birds of Southern Africa 7th edn. (John Voelcker Bird Book Fund, 2005).
Christie, D. A. & Ferguson-Lees, J. Raptors of the World (Christopher Helm Publishers, 2010).
Martin, R. O. et al. Phenological shifts assist colonisation of a novel environment in a range-expanding raptor. Oikos 123, 1457–1468 (2014).
Google Scholar
Rose, S., Sumasgutner, P., Koeslag, A. & Amar, A. Does seasonal decline in breeding performance differ for an African raptor across an urbanization gradient?. Front. Ecol. Evol. 5, 47 (2017).
Google Scholar
Horrocks, N. P. et al. Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance. Physiol. Biochem. Zool. 85, 504–515 (2012).
Google Scholar
Horrocks, N. P. et al. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 177, 281–290 (2015).
Google Scholar
Sergio, F., Blas, J., Forero, M. G., Donázar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. Sociobiol. 18, 811–821 (2007).
Google Scholar
Rose, S., Thomson, R. L., Oschadleus, H.-D. & Lee, A. T. Summarising biometrics from the SAFRING database for southern African birds. Ostrich 2, 1–5 (2019).
Paijmans, D. M., Rose, S., Oschadleus, H.-D. & Thomson, R. L. SAFRING ringing report for 2017. Biodivers. Observ. 10, 1–11 (2019).
Katzenberger, J., Tate, G., Koeslag, A. & Amar, A. Black Sparrowhawk brooding behaviour in relation to chick age and weather variation in the recently colonised Cape Peninsula, South Africa. J. Ornithol. 156, 903–913 (2015).
Google Scholar
Buehler, D. M. et al. Constitutive immune function responds more slowly to handling stress than corticosterone in a shorebird. Physiol. Biochem. Zool. 81, 673–681 (2008).
Google Scholar
Zylberberg, M. Common measures of immune function vary with time of day and sampling protocol in five passerine species. J Exp Biol 218, 757–766 (2015).
Google Scholar
van de Crommenacker, J. et al. Effects of immune supplementation and immune challenge on oxidative status and physiology in a model bird: Implications for ecologists. J. Exp. Biol. 213, 3527–3535 (2010).
Google Scholar
French, S. S. & Neuman-Lee, L. A. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open 1, 482–487 (2012).
Google Scholar
Eikenaar, C. & Hegemann, A. Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics. Biol. Let. 12, 20160078 (2016).
Google Scholar
Hegemann, A., Pardal, S. & Matson, K. D. Indices of immune function used by ecologists are mostly unaffected by repeated freeze-thaw cycles and methodological deviations. Front. Zool. 14, 43 (2017).
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna, Austria (R Foundation for Statistical Computing, 2019).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 2 (2017).
Google Scholar
McCurdy, D. G., Shutler, D., Mullie, A. & Forbes, M. R. Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82, 303–312 (1998).
Google Scholar
Parejo, D., Silva, N. & Avilés, J. M. Within-brood size differences affect innate and acquired immunity in roller Coracias garrulus nestlings. J. Avian Biol. 38, 717–725 (2007).
Google Scholar
Kanikowska, D., Hyun, K. J., Tokura, H., Azama, T. & Nishimura, S. Circadian rhythm of acute phase proteins under the influence of bright/dim light during the daytime. Chronobiol. Int. 22, 137–143 (2005).
Google Scholar
Laake, J. L. RMark: an R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep 2013-01, Seattle, WA (Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 2013).
White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
Google Scholar
Burnham, K. P. Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture (American Fisheries Society, 1987).
Coquet, R., Lebreton, J.-D., Gimenez, O. & Reboulet, A.-M. U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography 32, 1071–1074 (2009).
Google Scholar
Sauer, J. R. & Byron, K. W. Generalized procedures for testing hypotheses about survival or recovery raes. J. Wildl. Manag. 53, 137–142 (1989).
Google Scholar
Nebel, C., Amar, A., Hegemann, A., Isaksson, C. & Sumasgutner, P. Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor: Data, Zivahub, https://doi.org/10.25375/uct.12780803 (2021).
Source: Ecology - nature.com