in

Past abrupt changes, tipping points and cascading impacts in the Earth system

[adace-ad id="91168"]
  • 1.

    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article 

    Google Scholar 

  • 2.

    Lohmann, G., Butzin, M., Eissner, N., Shi, X. & Stepanek, C. Abrupt climate and weather changes across time scales. Paleoceanogr. Paleoclimatol. 35, e2019PA003782 (2020).

    Article 

    Google Scholar 

  • 3.

    Meehl, G. A. & Stocker, T. F. Global Climate Projections (Cambridge Univ. Press, 2007).

  • 4.

    Steiger, N. J. et al. Oceanic and radiative forcing of medieval megadroughts in the American Southwest. Sci. Adv. 5, eaax0087 (2019).

    Article 

    Google Scholar 

  • 5.

    Lustig, T., Klassen, S., Evans, D., French, R. & Moffat, I. Evidence for the breakdown of an Angkorian hydraulic system, and its historical implications for understanding the Khmer Empire. J. Archaeol. Sci. Rep. 17, 195–211 (2018).

    Google Scholar 

  • 6.

    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).

    Article 

    Google Scholar 

  • 7.

    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    Article 

    Google Scholar 

  • 8.

    Rocha, J. C., Peterson, G., Bodin, O. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    Article 

    Google Scholar 

  • 9.

    Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    Article 

    Google Scholar 

  • 10.

    Pedro, J. B. et al. The last deglaciation: timing the bipolar seesaw. Clim. Past 7, 671–683 (2011).

    Article 

    Google Scholar 

  • 11.

    Lynch-Stieglitz, J. The Atlantic meridional overturning circulation and abrupt climate change. Annu. Rev. Mar. Sci. 9, 83–104 (2017).

    Article 

    Google Scholar 

  • 12.

    McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article 

    Google Scholar 

  • 13.

    Broecker, W. S., Bond, G., Klas, M., Bonani, G. & Wolfli, W. A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanogr. Paleoclimatol. 5, 469–477 (1990).

    Article 

    Google Scholar 

  • 14.

    Gasson, E. G. W., DeConto, R. M., Pollard, D. & Clark, C. D. Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun. 9, 1510 (2018).

  • 15.

    MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich Events. Paleoceanography 8, 775–784 (1993).

    Article 

    Google Scholar 

  • 16.

    Bassis, J. N., Petersen, S. V. & Mac Cathles, L. Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542, 332–334 (2017).

    Article 

    Google Scholar 

  • 17.

    Obase, T. & Abe-Ouchi, A. Abrupt Bølling-Allerød warming simulated under gradual forcing of the last deglaciation. Geophys. Res. Lett. 46, 11397–11405 (2019).

    Article 

    Google Scholar 

  • 18.

    Boers, N. Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).

  • 19.

    Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. & Svensson, A. Millennial-scale variability during the last glacial: the ice core record. Quat. Sci. Rev. 29, 2828–2838 (2010).

    Article 

    Google Scholar 

  • 20.

    Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012).

    Article 

    Google Scholar 

  • 21.

    Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. L. High-latitude forcing of the South American summer monsoon during the last glacial. Science 335, 570–573 (2012).

    Article 

    Google Scholar 

  • 22.

    Bauska, T. K., Marcott, S. A. & Brook, E. J. Abrupt changes in the global carbon cycle during the last glacial period. Nat. Geosci. 14, 91–96 (2021).

    Article 

    Google Scholar 

  • 23.

    Gibson, K. A. & Peterson, L. C. A 0.6 million year record of millennial-scale climate variability in the tropics. Geophys. Res. Lett. 41, 969–975 (2014).

    Article 

    Google Scholar 

  • 24.

    Goni, M. F. S. et al. Contrasting impacts of Dansgaars-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151 (2008); corrigendum 27, 1789 (2008).

  • 25.

    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    Article 

    Google Scholar 

  • 26.

    Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article 

    Google Scholar 

  • 27.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article 

    Google Scholar 

  • 28.

    Su, Z., Ingersoll, A. P. & He, F. On the abruptness of Bølling-Allerød warming. J. Clim. 29, 4965–4975 (2016).

    Article 

    Google Scholar 

  • 29.

    Bard, E., Hamelin, B. & Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and younger dryas sea levels revisited with boreholes at tahiti. Science 327, 1235–1237 (2010).

    Article 

    Google Scholar 

  • 30.

    Wagner, J. D. M. et al. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat. Geosci. 3, 110–113 (2010).

    Article 

    Google Scholar 

  • 31.

    Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).

    Article 

    Google Scholar 

  • 32.

    Birks, H. H. South to north: contrasting late-glacial and early-Holocene climate changes and vegetation responses between south and north Norway. Holocene 25, 37–52 (2015).

    Article 

    Google Scholar 

  • 33.

    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).

    Article 

    Google Scholar 

  • 34.

    Novello, V. F. et al. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 7, 44267 (2017).

    Article 

    Google Scholar 

  • 35.

    Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    Article 

    Google Scholar 

  • 36.

    Reichart, G. J., Lourens, L. J. & Zachariasse, W. J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanography 13, 607–621 (1998).

    Article 

    Google Scholar 

  • 37.

    Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).

    Article 

    Google Scholar 

  • 38.

    Davies, M. H. et al. The deglacial transition on the southeastern Alaska Margin: meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223 (2011).

  • 39.

    Abdul, N. A., Mortlock, R. A., Wright, J. D. & Fairbanks, R. G. Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmata. Paleoceanography 31, 330–344 (2016).

    Article 

    Google Scholar 

  • 40.

    Soulet, G. et al. Glacial hydrologic conditions in the Black Sea reconstructed using geochemical pore water profiles. Earth Planet. Sci. Lett. 296, 57–66 (2010).

    Article 

    Google Scholar 

  • 41.

    Yanchilina, A. G. et al. Compilation of geophysical, geochronological, and geochemical evidence indicates a rapid Mediterranean-derived submergence of the Black Sea’s shelf and subsequent substantial salinification in the early Holocene. Mar. Geol. 383, 14–34 (2017).

    Article 

    Google Scholar 

  • 42.

    Toucanne, S. et al. The first estimation of Fleuve Manche palaeoriver discharge during the last deglaciation: evidence for Fennoscandian ice sheet meltwater flow in the English Channel ca 20-18 ka ago. Earth Planet. Sci. Lett. 290, 459–473 (2010).

    Article 

    Google Scholar 

  • 43.

    Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, 1033–1035 (2000).

    Article 

    Google Scholar 

  • 44.

    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article 

    Google Scholar 

  • 45.

    Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article 

    Google Scholar 

  • 46.

    Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).

    Article 

    Google Scholar 

  • 47.

    Shuman, B. N. & Marsicek, J. The structure of Holocene climate change in mid-latitude North America. Quat. Sci. Rev. 141, 38–51 (2016).

    Article 

    Google Scholar 

  • 48.

    Alley, R. B. & Agustsdottir, A. M. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat. Sci. Rev. 24, 1123–1149 (2005).

    Article 

    Google Scholar 

  • 49.

    Tinner, W. & Lotter, A. F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554 (2001).

    Article 

    Google Scholar 

  • 50.

    Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 369, 1010–1035 (2011).

    Article 

    Google Scholar 

  • 51.

    Wang, Y. J. et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article 

    Google Scholar 

  • 52.

    Williams, J. W. & Burke, K. in Climate Change and Biodiversity (eds Lovejoy, T. & Hannah, L.) 128–141 (Yale Univ. Press, 2019).

  • 53.

    deMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    Article 

    Google Scholar 

  • 54.

    Gupta, A., Das, M. & Anderson, D. Solar influence on the Indian summer monsoon during the Holocene. Geophys. Res. Lett. 32, L17703 (2005).

  • 55.

    Buntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 ad. Nat. Geosci. 9, 231–236 (2016).

    Article 

    Google Scholar 

  • 56.

    Walker, M. et al. Formal subdivision of the holocene series/epoch: a summary. J. Geol. Soc. India 93, 135–141 (2019).

    Article 

    Google Scholar 

  • 57.

    Bradley, R. & Bakke, J. Is there evidence for a 4.2 ka BP event in the northern North Atlantic region? Clim. Past 15, 1665–1676 (2019).

    Article 

    Google Scholar 

  • 58.

    Butzer, K. W. Collapse, environment, and society. Proc. Natl Acad. Sci. USA 109, 3632–3639 (2012).

    Article 

    Google Scholar 

  • 59.

    Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140–144 (2015).

    Article 

    Google Scholar 

  • 60.

    Trauth, M. H. et al. Classifying past climate change in the Chew Bahir basin, southern Ethiopia, using recurrence quantification analysis. Clim. Dynam. 53, 2557–2572 (2019).

    Article 

    Google Scholar 

  • 61.

    Claussen, M., Bathiany, S., Brovkin, V. & Kleinen, T. Simulated climate-vegetation interaction in semi-arid regions affected by plant diversity. Nat. Geosci. 6, 954–958 (2013).

    Article 

    Google Scholar 

  • 62.

    Kropelin, S. et al. Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320, 765–768 (2008).

    Article 

    Google Scholar 

  • 63.

    Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).

    Article 

    Google Scholar 

  • 64.

    Kuper, R. & Kropelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).

    Article 

    Google Scholar 

  • 65.

    Miao, X. D. et al. A 10,000 year record of dune activity, dust storms, and severe drought in the central Great Plains. Geology 35, 119–122 (2007).

    Article 

    Google Scholar 

  • 66.

    Williams, J. W., Shuman, B. & Bartlein, P. J. Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Glob. Planet. Change 66, 195–207 (2009).

    Article 

    Google Scholar 

  • 67.

    Williams, J. W., Blois, J. L. & Shuman, B. N. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J. Ecol. 99, 664–677 (2011).

    Article 

    Google Scholar 

  • 68.

    Umbanhowar, C. E., Camill, P., Geiss, C. E. & Teed, R. Asymmetric vegetation responses to mid-Holocene aridity at the prairie-forest ecotone in south-central Minnesota. Quat. Res. 66, 53–66 (2006).

    Article 

    Google Scholar 

  • 69.

    Williams, J. W., Shuman, B., Bartlein, P. J., Diffenbaugh, N. S. & Webb, T. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38, 135–138 (2010).

    Article 

    Google Scholar 

  • 70.

    Shuman, B. Patterns, processes, and impacts of abrupt climate change in a warm world: the past 11,700 years. WIREs Clim. Change 3, 19–43 (2012).

    Article 

    Google Scholar 

  • 71.

    Bocinsky, R. K., Rush, J., Kintigh, K. W. & Kohler, T. A. Exploration and exploitation in the macrohistory of the pre-Hispanic Pueblo Southwest. Sci. Adv. 2, e1501532 (2016).

  • 72.

    Graybilll, D. A., Gregory, D. A., Funkhouser, G. S. & Nials, F. in Environmental Change and Human Adaptation in the Ancient American Southwest (eds Doyel, D. E. & Dean, J. S.) 69–123 (Univ. Utah Press, 2006).

  • 73.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article 

    Google Scholar 

  • 74.

    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    Article 

    Google Scholar 

  • 75.

    Wagner, T. J. W. & Eisenman, I. False alarms: how early warning signals falsely predict abrupt sea ice loss. Geophys. Res. Lett. 42, 10333–10341 (2015).

    Google Scholar 

  • 76.

    Boulton, C. A., Good, P. & Lenton, T. M. Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).

    Article 

    Google Scholar 

  • 77.

    Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 31, L23207 (2004).

  • 78.

    Boulton, C. A., Allison, L. C. & Lenton, T. M. Early warning signals of atlantic meridional overturning circulation collapse in a fully coupled climate model. Nat. Commun. 5, 5752 (2014).

  • 79.

    Ditlevsen, P. D. & Johnsen, S. J. Tipping points: early warning and wishful thinking. Geophys. Res. Lett. 37, L19703 (2010).

  • 80.

    Cimatoribus, A. A., Drijfhout, S. S., Livina, V. & van der Schrier, G. Dansgaard-Oeschger events: bifurcation points in the climate system. Clim. Past 9, 323–333 (2013).

    Article 

    Google Scholar 

  • 81.

    Thomas, Z. A. et al. Early warnings and missed alarms for abrupt monsoon transitions. Clim. Past 11, 1621–1633 (2015).

    Article 

    Google Scholar 

  • 82.

    Stegner, M. A., Ratajczak, Z., Carpenter, S. R. & Williams, J. W. Inferring critical transitions in paleoecological time series with irregular sampling and variable time-averaging. Quat. Sci. Rev. 207, 49–63 (2019).

    Article 

    Google Scholar 

  • 83.

    Litzow, M. A., Urban, J. D. & Laurel, B. J. Increased spatial variance accompanies reorganization of two continental shelf ecosystems. Ecol. Appl. 18, 1331–1337 (2008).

    Article 

    Google Scholar 

  • 84.

    Bathiany, S., Claussen, M. & Fraedrich, K. Detecting hotspots of atmosphere-vegetation interaction via slowing down. Part 1: a stochastic approach. Earth Syst. Dynam. 4, 63–78 (2013).

    Article 

    Google Scholar 

  • 85.

    Weinans, E. et al. Finding the direction of lowest resilience inmultivariate complex systems. J. R. Soc. Interface 16, 20190629 (2019).

    Article 

    Google Scholar 

  • 86.

    Feng, Q. Y., Viebahn, J. P. & Dijkstra, H. A. Deep ocean early warning signals of an Atlantic MOC collapse. Geophys. Res. Lett. 41, 6009–6015 (2014).

    Article 

    Google Scholar 

  • 87.

    Praetorius, S. K. & Mix, A. C. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345, 444–448 (2014).

    Article 

    Google Scholar 

  • 88.

    Guttal, V. & Jayaprakash, C. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theor. Ecol. 2, 3–12 (2009).

    Article 

    Google Scholar 

  • 89.

    Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    Article 

    Google Scholar 

  • 90.

    Dekker, M. M., von der Heydt, A. S. & Dijkstra, H. A. Cascading transitions in the climate system. Earth Syst. Dynam. 9, 1243–1260 (2018).

    Article 

    Google Scholar 

  • 91.

    Downey, S. S., Haas, W. R. & Shennan, S. J. European Neolithic societies showed early warning signals of population collapse. Proc. Natl Acad. Sci. USA 113, 9751–9756 (2016).

    Article 

    Google Scholar 

  • 92.

    Spielmann, K. A., Peeples, M. A., Glowacki, D. M. & Dugmore, A. Early warning signals of social transformation: a case study from the US Southwest. PLoS ONE 11, e0163685 (2016).

  • 93.

    Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).

    Article 

    Google Scholar 

  • 94.

    Cailleret, M. et al. Early-warning signals of individual tree mortality based on annual radial growth. Front. Plant Sci. 9, 1964 (2019).

  • 95.

    Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).

    Article 

    Google Scholar 

  • 96.

    Klose, A. K., Karle, V., Winkelmann, R. & Donges, J. F. Emergence of cascading dynamics in interacting tipping elements of ecology and climate. R. Soc. Open Sci. 7, 200599 (2020).

    Article 

    Google Scholar 

  • 97.

    Bathiany, S., Hidding, J. & Scheffer, M. Edge detection reveals abrupt and extreme climate events. J. Clim. 33, 6399–6421 (2020).

    Article 

    Google Scholar 

  • 98.

    Flach, M. et al. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques. Earth Syst. Dynam. 8, 677–696 (2017).

    Article 

    Google Scholar 

  • 99.

    Reeves, J., Chen, J., Wang, X. L. L., Lund, R. & Lu, Q. Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).

    Article 

    Google Scholar 

  • 100.

    Flato, G. M. Earth system models: an overview. WIREs Clim. Change 2, 783–800 (2011).

    Article 

    Google Scholar 

  • 101.

    Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    Article 

    Google Scholar 

  • 102.

    Dallmeyer, A., Claussen, M., Lorenz, S. J. & Shanahan, T. The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Clim. Past 16, 117–140 (2020).

    Article 

    Google Scholar 

  • 103.

    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A new way to detect the SARS-CoV-2 Alpha variant in wastewater

    Inaugural fund supports early-stage collaborations between MIT and Jordan